ROBOT BUILDE

Robotics Society of Southern California

December 1990

Upcoming Events Calendar.

December 4
December 8
December 25
January 1
January 8
January 12

RSSC December Meeting, MTI College: Topic - Batteries 7-9 PM.
RSSC Robot Project Workshop, The Robot Company 10-12 AM,
Merry Christmas to all.
Happy Newyear.

RSSC Meeting at MTI College: 7-9 PM. Note 2nd Tuesday in January.
RSSC Robot Project Workshop, at Jerry Burton's Laboratory.

November 6th RSSC MEETING

We had a well attended meeting. We need
all members to pay their dues to carry us
into the next year. If you have not paid
your dues, please bring them to the next
meeting.

The Topic for the evening was MOTORS
and present by Tom Carroll. Excerpt from
C & H surplus catalog was distributed and
discussed. This catalog, has many surplus
motors for sale. Tom explained which
motors were best for robotic applications
based on years of robotic experience.

The meeting concluded with the demo of
the club's robot. The unit was aloud to
wonder the halls of MTI College. Thanks
to Mark Frank for his work in building this
fine unit.

o

November 10 Work Shop

The group that gathered played with the
club‘s robot and then collected to discuss
methods of data transmission to the robot.
A RF modem is needed transmit the data
to and from a remote station.

o

MERRY CHRISTMAS
AND

HAPPY NEWYEAR

The Roboteer .
by Jerry Burton

Last month I discussed the E_DEF module
and the services it needed to provide. In
reviewing the article it wasn't apparent that
for the E_DEF module to allow the user to
modify the E_MAP and P_MAP that it
must provide a graphical interface. It
should show as minimum the tiles that it
thinks are empty, occupied, and which are
designated a path tiles.

When the user selects certain tiles they
should be highlighted in some fashion, so
the user can tell what subset a given action
applies to. The society robot has an EGA
card so a rather good picture should be able
to be generated. Since normally we use a
monochrome monitor we can use bright,
normal, low, and blinking attributes to
show the various states of each tile.

This month I'll cover the PLANNING
module. For the sake of explanation, let's
assume that you have a complete map of
your environment and have defined a task
point BEER, and a task to be executed at
that location (assume we entered
GETBEER, which somehow gets the beer
once the robot is positioned correctly), in
the class KITCHEN using the E_DEF
module. Also assume the knowledge base
can recognize the command "GET me a
BEER" (you only have to train GET and
BEER, since the word GET tniggers the
recognition and BEER completes the
command, the words in between are
ignored). The speech subsystem puts GET

BEER in the keyboard buffer. The
knowledge base then calls the PLANNING
module and supplies the action GET and
the destination BEER.

The action GET implies a round trip,
whereas the action GO implies a one-way
trip.

We must also assume that the robot knows
where it currently is. The first thing the
PLANNING module has to do is search
through the task structure (table, or list, or
7) to get the global coordinates for the
destination BEER. Each entry must contain
the task point name (BEER), its location
(global X,Y and class KITCHEN), and the
task to be executed once the destination 1s
reached (GETBEER).

The next step is to determine how to get
from where the robot is to the final
destination. This requires that. the
PLANNING module search through the
P_MAP to find an appropriate path. The
direct method is to search through P-MAP
to find the shortest path from the initial
point to the destination point. There are a
number of tree searching algorithms
defined in the Al literature to solve this
type of problem., however, they can be
time consuming and are best handled by
LISP or PROLOG type languages.

In order to speed up this process | use thc
concept of a class transition matrix.

For example, assume we have 5 classes A
E. with 5 exit points, the transition matri»
is as follows :

A 1

B |1 1

C 1 1

D 1 1
E 1 1

The table has a 1 if a transition from one
class to another is possible. This means that
the robot can go from A to B, but not to C,
D, E. From class B the robot can go to A
or C, but not D or E, etc. The primary
reason for using a class transition matrix is
to limit the search of the P-MAP.

If it is required to go from a point pl in A
to a point p2 in E then the following set of
commands would be generated. Go from
point pl in A to the AB-exit point, from B
to C, C to CE-exit, and the CE-exit to the
destination point p2. Another path is from
point pl in A to AB-exit, from B to C, C to
D, D to DE-exit, and DE-exit to point p2
in E.

The search algorithm should determine the
shortest path of all possible paths available.
Note that the initial move, from pl in A to
AB-exit and DE-exit to p2, are identical so
the only part of the P-MAP that needs to
searched is in the intermediate classes. If
the initial point and the destination are in
the same class then a direct path can be
calculated and the class transition matrix
does not need to be checked. If the initial
and destination classes are adjacent then the

transition class matrix gives an immediate
solution. If there are intervening classes
then the transition matrix gives the
allowable transitions.

It is possible to determine a set of
sub-goals to transition from one class to
another so the intermediate paths do not
have to be calculated each time. This is
accomplished by calculating transition paths
for all classes that have multiple exits.

For example, since class B has 2 exit
points, a precalculated path would give a
path from the AB-exit to the BC-exit point.
Since class C has 3 exit points, there are 3
paths: 1) from the BC-exit to DC-exit,
which provides a transition from B to D via
C; 2) from the BC-exit to CE-exit, which
provides a transition from B to E via C;
from CE-exit to DC-exit, which provides a
transition from D to E via C. In general,
there are n times (n-1) divided by 2
transition paths for a class with n exits.

Using this strategy cuts down the amount of
searching required. We only have to build
paths from the initial point to an exit point
and from the final exit point to the
destination point. The simplest way to do
this is traverse the P-MAP from the exit
point to the initial/destination point and
count the number of tiles in the path
generated. Since there may be multiple
paths (depending on the width of the P-
MAP), we keep generating paths until all
the tiles in the P-MAP within the class have
been checked. The path with the lowest
number represents the shortest path.

The output from the PLANNING module is
a set of X,Y points that the NAVIGATION
module is to move the robot through. My
current implementation is to enter the
NAVIGATION module with a stack
containing X,Y points. The NAVIGATION
module then calculates any heading changes
and distances required to go from the
robots current position to the next point in
the stack. Once the stack is empty the
destination point has been reached and
NAVIGATION returns with a completion
flag set TRUE. If the completion flag is
FALSE, then PLANNING with calculate
another path to the destination.

The only reason the NAVIGATION
module returns a FALSE completion flag ix
that it encountered an obstacle and could
not get around it. This implies that the
NAVIGATION module updates the E-MAP
and P-MAP on the fly, so that the
PLANNING module will calculate a new
path.

Next month [I'lll go through the
NAVIGATION module which will
complete the overall discussion of the

Navigation system. After that I'll start
presenting more detail of each of the
modules and what functions they have to
contain, and eventually the C+ + code
which implements them.

o}

Robotics Society of Southern California

1125 Birch Ave.
Orange, CA 92714

Mr. Scott MacGillivray
4436 Ostrom Ave.
Lakewood, CA 90713

