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Abstract

This thesis describes the development of an integrated solution for
simultaneous localization and mapping (SLAM), path planning and
path following for a four-wheel indoor robot. Running on the robot’s
on-board computer, the solution estimates maps and location of the
robot in real-time.

The maps built are occupancy grid maps, which are suitable for
path planning and for human inspection. The implemented path plan-
ning algorithm is successful in generating paths which avoid obstacles
and can be followed accurately by automatic control using a line-of-
sight approach.

Experiments are presented which demonstrate the software’s abil-
ity to accurately build a map of many environments with no prior
assumptions or preparations. Providing foundations for localization
and navigation, the system represents both a proof of concept and a
platform on which others can build further.

Sammendrag

Rapporten beskriver utviklingen av en integrert løsning for samtidig
lokalisering og kartlegging (SLAM), ruteplanlegging og rutefølging for
en innendørs robot med fire hjul. Løsningen kjører p̊a robotens egen
datamaskin, og estimerer kart og robotens plassering i sanntid.

Kartene best̊ar av celler i et rutenett, og er passende for ruteplan-
legging og for menneskelig inspeksjon. Den implementerte ruteplan-
leggingsalgoritmen kan generere ruter som unng̊ar hindringer og som
kan følges nøyaktig av automatisk kontroll som bruker en line-of-sight-
tilnærming.

Eksperimenter presenteres som demonstrerer programvarens evner
til å bygge nøyaktige kart over miljø, med uten forh̊andsantakelser eller
preparasjoner. Systemet gir grunnlag for lokalisering og navigasjon, og
representerer et “proof of concept” og en plattform for videre utvikling.
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Problem Description

The Student should:

1. Decide on a set of sensors suitable for performing SLAM1 on the robot
in question.

(a) The sensors should be suitable for the generation of maps.

(b) The sensors should to some degree give possibilities of autonomous
operation for the robot, such as avoiding and detect collissions.

2. Do a literature search and choose one or more SLAM strategies or
algorithms suitable for on-line2 mapping and navigation of a indoor
flat environment. The algorithm should also be suitable for doing such
calculations off-line. The algorithm should be able to maintain maps of
size suitable for office buildings or similar buildings.

3. Develop the following solutions, given an on-board computer of high
performance:

(a) Data gathering: Implement a solution for passively gathering sensor
data. The solution should be able to do this while the robot is
controlled by some other means, and the data should be suitable
for performing off-line SLAM.

(b) Manual control: Data gathering while the robot is controlled man-
ually by some solution the Student has developed.

(c) On-line SLAM with manual control: Data gathering, map gener-
ation and estimation of position in real-time3, where the robot is
controlled by some solution the Student has developed.

1SLAM stands for Simultaneous Localization and Mapping, and refers to a process
which generates maps of an environment which a robot has navigated, while simultane-
ously deciding the positions which the robot has traversed.

2On-line SLAM refers to a SLAM-algorithm which is capable of performing SLAM
while the robot is driving, and could potentially be used for navigation. The opposite is
off-line, which performs SLAM from sensor logs and similar.

3Real-time here means calculations are fast enough to facilitate decisions or navigation
while driving.
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4. The following solutions should also be appreciated if they are developed:

(a) On-line SLAM with automatic exploration: Gathering of data, map
generation and automatic navigation with the purpose of exploring
the environment where the robot started, with the goal of generat-
ing a map.

(b) On-line SLAM with abstracted navigation: Given an already avail-
able map, the user can through a user interface decide on a destina-
tion. The robot should plan a path and navigate to this destination.
If the route is blocked, a new path should be generated if possible,
and and the new path should be navigated.

5. Develop an interface for controlling the different modes in the previ-
ous points, inspect and/or download sensor and map data, display esti-
mated position and other parameters. The interface should be available
via other units than the robot itself, through a wireless network.

Limitations:

1. It is not required to avoid all kinds of collisions or erroneous navigation,
also not in automatically navigating modes. The robot is followed by a
person with access to an emergency stop mechanism. Cliffs, which exist
with downward facing staircases, and collisions with tables or other low
objects are situations which the solutions need not handle.
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Summary and Conclusions

The start point of this thesis was the problem description, developed in
cooperation with the Supervisor. Plans were presented for robotic hardware,
which was to be built by another student [6]. Goals for the thesis were
defined for facilitating autonomous operation of the robot, which included
choosing and mounting a suitable set of sensors, implementing simultaneous
localization and mapping (SLAM), path planning and guidance, along with
a human interface.

Some previous work was considered from other students at the univer-
sity. This includes work on SLAM for small LEGO robots in constructed
mazes, and work on localization of a small competition robot on predefined
maps. The former was most relevant, but proved unsuitable for this thesis
because of a poor match of system architecture and application. The quality
of the LEGO robot’s maps were seen as not promising for larger environ-
ments. Importantly, they were landmark based maps, but this project was
assumed to work better with grid maps, which are more suitable for path
planning.

After research on what sensor types would be most suitable for the
project, two sensor types were mounted on the robot hardware: a low-end
LIDAR unit and two encoders attached to freely rotating wheels, one on
each side of the robot. The LIDAR makes distance measurements up to a
maximum range of 5.6 meters. The encoders provide odometric measure-
ments which can facilitate dead reckoning. The sensors were chosen because
of their popularity in literature, ease of use and flexibility for further work.

A decision was made to implement a system from scratch in the pro-
gramming language Go, which had proven successful for the competition
robot previously mentioned.

The field of SLAM has been active in later years, and many algorithms
exist distributed over several approaches. Much research was done in order
to find a suitable algorithm to cover the points of the problem description
and the visions of the project for the future. Most of the literature is
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divided by the kinds of maps the approaches produce, prominently landmark
based maps and grid maps. A decision was made to implement a grid map
algorithm because they better facilitate path planning.

Some grid map algorithms maintain several maps in parallel through a
particle filter, a multi-hypothesis representation. A downside with the ap-
proach is the large consumption of RAM. An approach was considered which
lessens the RAM use of related maps, but the structure was seen as compli-
cated and existing implementations were hard to follow. Although multi-
hypothesis mapping has some advantages, especially in situations where the
trajectory of the robot closes a loop in the environment, a decision was made
to focus on single-hypothesis SLAM.

A minimal algorithm known as TinySLAM was first implemented for
the project. However, because of poor initial results, further work on the
algorithm was discontinued in favor of Hector SLAM. The abstracted func-
tioning of the two algorithms is similar: they are both based on matching
subsequent range scans to each other.

The Hector SLAM algorithm performs scan matching by a Gauss-Newton
based algorithm inspired by work in computer vision. Bilinear filtering of
the map and computation of approximated gradients allows scan matching
to be performed in a computationally efficient manner. In order to reduce
the problem of local minimas in the scan matching optimization scheme,
maps are simultaneously produced at different resolutions, forming a struc-
ture similar to image pyramids.

Odometric measurements was incorporated in the SLAM algorithm through
an extended Kalman filter. The filter considers both odometry and scan
matching position estimates in order to provide an estimated position for
the scan matching procedure.

A software was implemented around the SLAM algorithm, controlling
sensors, motor control, path planning and higher-level control. The software
provides a web interface with an API. The web interface is implemented with
a server side built in the software, and serves HTML web pages and static
files. The API provides data reflecting the state of the program and data
such as estimated position of the robot and maps.

The sensor module can log sensor data and play them back in real-
time. This represents a form of simulation, allowing testing to be performed
at a desktop computer without robot hardware. Repeatability is another
advantage. The rest of the software is agnostic to whether sensor data comes
from a log or currently running sensors.

A map storage module provides means of storing obtained maps for
re-use.
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Path planning was implemented using the well-known A* algorithm,
based on simplified instantaneous maps from the SLAM module. Measures
were taken in order to avoid planning paths through known obstacles or too
close to them. The algorithm is capable of planning paths through areas
of unknown state, but punishes this behavior according to a configurable
parameter. Paths produced by the A* algorithm are inherently non-smooth
and can contain zig-zag patterns, but the effect is lessened through path
smoothing by an algorithm with configurable parameters.

The motor module provides means of controlling the robot manually,
through the web interface. It also provides guidance, making the robot
follow planned paths. A collision detection module is used to stop the robot
when obstacles are detected in a sector in front of the robot, whenever the
robot is automatically following paths. When such stops occur, the robot
backs in order to escape the obstacle, before planning a new path to the
same goal location based on the currently available map. The scheme can
be used for automatically mapping an environment.

Several experiments were conducted in order to demonstrate abilities
and short-comings with the implementation and sensors. The SLAM-algorithm
can run on-line and in real-time, which is used for guidance and can provide
assistance if the robot is controlled manually, by this software or via other
software. Results were shown demonstrating the accuracy of the odometry
and its impact on the accuracies of maps when combined with LIDAR data
and the SLAM-algorithm.

The software was shown to accurately localize the robot and update
maps accordingly when using a previously obtained map or, equivalently,
when traversing areas of a map which has previously been mapped. The
path planning and guidance abilities of the software is able to generate and
follow efficient paths.

In unknown environments, path planning and guidance can be used in
order to automatically explore and build maps. By selecting a goal position
which the robot cannot reach, the software will exhaustively explore the
environment until it can be certain that the goal position is unreachable.

The SLAM process was demonstrated to have problems in areas where
the LIDAR measurements and the current scan matching algorithm cannot
alone produce accurate position estimates.

Closing loops of the environment is a problem recognized to be hard in
literature. Experiments show that the current software-hardware combina-
tion is able to close small loops. Larger loops cannot reliably be closed,
shown by an experiment with a loop of 125 meters. Multi-hypothesis map-
ping might help in such situations. Alternatively, a LIDAR units with longer
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range could significantly enhance the performance.
The robot lacks sensory equipment to be autonomous in all environ-

ments. Downward staircases, curbs and high doorsteps are among obstacles
which the robot cannot see. However, the robot shows autonomous abilities
in previously mapped areas.
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Preface

Mobile robots are becoming more popular, both in industrial and domes-
tic situations. Cleaning floors, transporting persons and even people – the
robots both relieve us for monotonous tasks and increase our safety, ex-
emplified with the Neato range of robotic vacuum cleaners and the Google
Autonomous Car project. The latter has completed over 500 000 km with-
out accidents on unprepared, real roads.

Automation and remote operation can make industry more effective,
and the oil platforms are good examples. If more operations could be done
remotely, from land, fewer people would have to work off-shore, far away
from home and exposed to risks of weather and accidents.

A central need for mobile robots and their autonomy is their ability to
know their environment, where they are and how they can move from one
place to another. Having a map, being able to localize within the map,
being able to plan paths and traverse them are abilities which can serve as
foundations for many applications.

Obtaining a map is thus a central question. The most labor efficient
and carefree solution is to let the robot replicate human behavior, making
maps as we go. The field known as SLAM, simultaneous localization and
mapping, studies how this can be achieved.

This thesis came to being on these thoughts. A prototype mobile robot
was to be built, with a robotic arm capable of manipulating its environment,
sensors, motors and software helping with navigation.

An operator controlling the prototype would have several means of con-
trol. Web cameras could be used for assistance when operating the arm
remotely.

By automatically generating maps and showing the robot’s position in
these maps, remote operators would gain more certainty in their navigation.
Perhaps the operator could be completely freed of the monotonous task of
navigation altogether? This became the vision of this thesis.

Answering the questions demanded research in the field of SLAM. Recent
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popularity has led to many approaches to the problem, each with their own
advantages and limitations. The thesis describes an implementation of a
robotic software from scratch, able to serve as a foundation the mobility
part of the prototype.

The work was hard but rewarding. Being given the time and opportunity
to implement such a large system represented a project of large freedoms,
with room for creativity. The amount of freedom also posed challenges of
defining scope and goals, particularly since the platform opens up so many
ideas for development of features: many ideas had to be set aside for further
work.

Although not explicitly mentioned in the problem description, a large
concern became making sure the work provides later students, projects and
theses based on this system with a good “cornerstone”. The author wanted
the system to be well documented and easy to understand and develop
further. Grid map based SLAM is to the author’s knowledge a novel field
for NTNU, which could be a point of expansion.

When conducting experiments in public areas, many students asked
about the project, what abilities the robot had, how the SLAM process
worked and were interested in working on the project themselves, for their
pre-project or master thesis.

This shows the project has large interest and potential among students.
Should the institute choose to develop this project further, many great
accomplishments can be made.

Declaration of Text Independence

For his master thesis pre-project, the author worked with localization for
the NTNU-Eurobot team’s robot and code base. The project has minor
similarities with the work of this thesis.

The pre-project included use of a LIDAR unit, which was also relevant
for this thesis. However, the advantage of the previous work is limited, as
drivers are provided from the manufacturer.

The work of the pre-project made use of particle filters for localization,
which bears some similarities with the Rao-Blackwellized particle filters on
which some SLAM algorithms are based. However, the inner workings are
largely different. Most prominently, the pre-project used static maps and
did not perform SLAM.

Material from the pre-project report is only used in this thesis where
cited.
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Distribution of Workload

Much of the work in relation to this thesis was done in research. SLAM is
a field of continuous research, and many algorithms and approaches exist.
A high number of articles of the field is published in later years; a search
for “simultaneous localization and mapping” of Google Scholar over 5000
results just from the last five months. A few textbooks exist describing
individual algorithms in detail, but few if any books give an overview of the
field. Probabilistic Robotics [59] covers many landmark based approaches,
but the field has moved past much of its scope. A recent book by Fernández-
Madrigal et al. [22] shows promise from its cover text, but was not available
to the author during thesis work. Developing such an overview was therefore
time consuming.

Much time also went to implementation of the system. Although efforts
were made in order to reuse available code, the system was built from the
ground up. Efforts were made in order to allow the system to be modular
and expandable, further drawing on time.

The robot hardware was not ready to be tested before the mid-April,
complicating initial testing of the software. Some LIDAR sensor logs were
acquired by mounting the LIDAR to a trolley and connecting it to a laptop
computer running the software.
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Chapter 1

Introduction

This chapter will outline the project and the motivations for the problem

description on which this work is based. It introduces the hardware which

was available during work with this thesis. We also outline some related

projects at NTNU, and give a short introduction to the SLAM problem,

which is central to this report.

1.1 About the Project

This master thesis is part of a project at the Department for Engineering Cy-

bernetics at the Norwegian University of Science and Technology (NTNU).

The vision of the project is to prototype a robot suitable for automatic or

semi-automatic maintenance and repair in industrial and other situations.

One possible application is use on oil platforms in the North Sea, where it’s

desirable to reduce use of on-site staff and have higher degree of automation.

This involves the control of a robotic arm mounted on the robot as well as

navigation of the robot.

The robot’s arm can be controlled manually from a computer with a

joystick. This setup can also be used to control the robot’s wheels through

motors, allowing the operator to see where the robot is going using cameras

mounted on the robot. The cameras are also used for remote operation of

the robotic arm.

The project was started in the last months of 2012, with a student

1
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planning the robot’s hardware setup. Although he would focus on manual

control of the robot and control of the robot arm, care was taken to ensure

compatibility with automatic control schemes.

1.2 Motivation for Mapping and Guidance

Automatic mapping and navigation can be advantageous for the NTNU

project and similar robots, for several reasons.

If the robot has a long way to drive in order to complete a task, it is

beneficial to have the robot navigate to the destination autonomously. This

frees time, and allows the operator to work more efficiently. One can also

imagine schemes where the robot could follow a timed schedule, ordering

it to report at different places at given points in time, allowing several

operators to share the robot more efficiently.

In several applications, there can also be a significant latency between

the manual commands given by a remote operator and the movements of

the robot. If the robot is controlled over the Internet, latencies can be high,

potentially making it cumbersome to control the robot accurately manually.

Even with manual navigation, it is convenient to have the robot con-

struct maps of the environment and display its position in these maps, for

assistance. Manual mapping would be very time consuming and we would

risk having to update the maps when the environment changes, i.e. when

furniture is moved, hallways are closed due to maintenance work or even if

doors are closed.

With the need for real-time map generation, localization must be per-

formed and can be seen both as a byproduct and a prerequisite, as we shall

later see. Localization by itself is also handy for manual navigation, and a

requirement for automatic navigation.

A robot which generates its own maps, is able to plan suitable paths and

follow them to a goal location was seen as highly desirable for the project.
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Figure 1.1: The full robot hardware, as used during the experiments of this thesis.

1.3 Robot Hardware

The robot’s hardware was planned, built and tested during the first half of

2013, simultaneously with the writing of this thesis and the development

of the software described in it. A brief description of the hardware will be

given here, while a more comprehensive one is given in [6].

The robot base consisted of a steel chassis, providing a plate of approx-

imately 80× 35 cm on which equipment could be placed. A picture as per

the end of the work of this thesis can be seen in Figure 1.1.
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Figure 1.2: One of the omniwheels mounted on the robot. The “rollers” can roll
perpendicularly to the rolling direction of the wheel.

1.3.1 Wheels and Driving Capabilities

Four motors were attached to the chassis, one for each of four wheels. The

wheels were mounted in a rectangle.

The wheels were omni-directional, as shown in Figure 1.2. Having

smaller wheels perpendicular to the rolling direction allowed them to slide

laterally. This eliminated the need for a complicated car-like Ackermann-

type steering mechanism. Instead, turning was achieved by letting the left

hand side wheels rotate with a different velocity from the right hand side

wheels. This gives a rotating motion around the approximate geographical

center of the wheels, when the wheels are mounted in a rectangle.

When the two wheels on each of the sides always rotate as a pair, i.e.

with the same velocity, this setup gives equations of motion approximately

equal to that of a differential wheeled robot. These equations can be found

in [50]. The approach is also called skid steer drive. During the months

of work, a motor controller card for controlling the motors from a PC was

added.

The motor controller card, which the on-board computer communicates

with, was set up such that the left pair and the right pair of wheels were

always given the same control signals.
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1.3.2 Equipment

On the 0.3 m2 robot base plate, the following equipment is fitted or shuld

be fitted at a later time:

� A robotic arm and a controller box.

� Two web cameras.

� A 12 V car battery connected to a inverter, offering 240 V AC power.

� A lithium battery providing power for the motors.

� A computer equipped with a powerful i5 CPU from Intel Corporation

and 8 GB RAM, running Windows 7.

Additionally, a range sensor and odometric sensors were added, as de-

scribed in Chapter 3.

1.4 The SLAM Problem

Simultaneous localization and mapping, or SLAM, is a process very central

to this thesis. The name refers to the problem of creating and updating a

map, while also maintaining the location of a robot in that map. In other

words, to learn a map of the robot’s environments using the robot’s sensors.

For autonomous mobile robots, learning maps is often essential. Being

able to automatically navigate in an environment is dependent on having

a map, and manually creating this map is often a hard and labor intensive

effort. Maintaining can prove costly enough to render the robot unusable.

Equipping the robot with sensors and software enabling it to solve this

task by itself can be of great importance to the success of the robot system.

Autonomous mobile robots also need to localize them selves in their

environment. Some sensor arrays could provide a full state estimate, such as

an overhead camera combined with computer vision software. This solution

is used primarily when the environment restricted to a small surface, such

as in the Micro Robot World Cup Soccer Tournament (MiroSot) [63]. In

such applications, the full robot position can be computed directly.

However, when the environment grows, or the environment should not

be changed in order for the robot to obtain a position estimate, such sensor
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arrays become infeasible. For a robot exploring unprepared indoor envi-

ronments, its location most often has to be computed from several sensor

scans, and is dependent on a map.

Importantly, the problem of SLAM – learning a map while simultane-

ously estimating the robot’s position in that map – consist of two mutually

dependent subproblems. If a complete and accurate map existed, simpler

algorithms such as Monte Carlo Localization could have been utilized for

generating position estimates [59, 8]. Likewise, if a complete history of ac-

curate positions existed for the robot, map learning would be reduced to

writing sensor data to a map representation [45]. It’s a chicken and egg

problem [59].

For this reason, the problem is recognized to be hard, and it requires a

search for a solution in a high-dimensional space [27] of possible locations

and maps.

1.4.1 Applications

SLAM has many applications in modern robotics, and features frequently in

many kinds of mobile robots where other forms of position estimation, such

as GPS, is not available or not accurate enough. Examples include indoor

robots, subsea, underground and even on the surfaces of other planets [45].

SLAM can be used to facilitate autonomous navigation or for the pur-

pose of providing maps itself. An example on the latter can be found in

urban search and rescue (USAR) situations [37], where unmanned vehicles,

drones or hand-held devices gather data and perform SLAM to provide maps

of areas such as collapsed buildings or mines. Some automated systems can

even plot the locations of trapped victims in these maps, providing useful

help for rescue teams.

For indoor mobile robots, SLAM can provide a basis for automated

navigation. The process can relieve operators of having to construct and

maintain maps.

While few consumer products performing SLAM are available on the

market, one example is Neato Robotics’ autonomous vacuum cleaners [1].

Their vacuum cleaners perform SLAM algorithms in order to plan trajecto-
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ries cleaning the whole floor.

Other well-known projects include Stanley, an automated car based on

a Volkswagen Touareg, which won the DARPA Grand Challenge in 2005.

The vehicle performs SLAM and determines drivable areas [60].

1.5 Previous Work by NTNU Students

Related work has been done NTNU students in recent years. Two of these

projects are described briefly below.

1.5.1 LEGO Robots

Students at the Department of Engineering Cybernetics at NTNU have

written several project reports and master theses around SLAM in LEGO

robots [52, 31, 56, 57, 39, 40, 47, 30, 62, 61, 29]. The robots have been

small, and mainly built from LEGO parts. The main body of SLAM related

software has been implemented using MATLAB (e.g. [29]), while sensor

data has come from IR-sensors, ultra sonic sensors and web cameras, as

well as wheel encoders for odometry. The LEGO robots have implemented

SLAM capabilities for mapping and navigation in an unknown maze. An

overview of the reports is presented in [62].

The SLAM software was running on off-board computers, with sensor

data and control signals being sent over a wireless connection between robot

and computer.

The most recent master thesis, [29], utilized two LEGO robots. One

had a sensor array consisting of a rotating set of IR sensors, while the other

was equipped with a wireless web camera. The thesis reports “increased

performance”, but does not document the accuracy of the maps, and has

no examples of map output.

[62] reports frequent errors in the IR distance sensors and increased

accuracy in the position estimates. The project report includes several map

output examples for evaluation.

[62] also contains a short explaination of the methods used for SLAM in

the LEGO robot systems. A MATLAB tool called CAS Robot Navigation
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Figure 1.3: Example map output form [62]. The environment is rectangular. The
SLAM algorithm introduces an invalid line segment cutting one corner. Figure
courtesy of [62].

Toolbox is used. The system is landmark-based, and produces beacons and

line segments, which together make up a map. The map and robot position

is maintained in an extended Kalman filter [5].

Of the main problems with the SLAM algorithm used for the LEGO

robots, [62] reports its inability to represent arbitrary environments. The

beacons and line segments are unable to represent curves. There is no

mention of how the system would have performed in larger environments. In

addition, the system struggles with erroneous measurements, constructing

beacons and line segments in the map that do not actually exist, which in

turn can limit the navigation algorithms.

1.5.2 Eurobot-NTNU

NTNU has a team named Eurobot-NTNU, which competes in the annual

competition Eurobot, usually held in France. The team builds robots and

accompanying software for the purpose, which includes means of localizing

the robot for navigation. The competition is held on game boards of 2× 3

meters, mainly with known obstacles.
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[8] describes a system for localizing the robot on the competition game

board using Monte Carlo localization strategies and a laser range scanner

(LIDAR). The system is able to localize the robot on the board using a

tablet PC with limited performance.

In a later report by other students, this scheme was found to perform

better than previous localization technologies for the robot setup [41]. It

performed well, showing a low variance on the estimates on consecutive

experiments, and was recommended for future use by the Eurobot-NTNU

team.

The software for the Eurobot-NTNU team’s robot includes a set of mod-

ules which can be used for other projects. Some of the modules are an

extended Kalman filter module, a web interface module, a path planning

module and a guidance module for following planned paths [50]. The mod-

ules are all written in the language Go.

Localization schemes for use in the Eurobot competition can rely on a

static map, as the game table has known measurements to within reason-

able accuracy. The work of building a map can be done manually, which

eliminates the need for a SLAM algorithm. This seriously simplifies the soft-

ware and computational needs, as the map without much error can be seen

as being correct, accounting all errors to measurement errors and position

estimate errors.

However, many parts of this system are related to SLAM problems. The

use of a laser range scanner and some of the techniques used for localization,

Kalman filters and particle filters, are common also for SLAM purposes.

1.6 Thesis Outline

This thesis will present the planning, implementation and testing of a soft-

ware developed for performing simultaneous localization and mapping (SLAM)

as well as path planning and guidance for a indoor mobile robot. In Chap-

ter 2, background material on the SLAM problem is presented, as basis

for some of the later decisions regarding the implementation. Chapter 3

discusses some of the alternatives for sensors the software could use for

achieving its goals, and includes the decisions which were made with re-
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gards to sensors. Chapter 4 details the implementation of the system and

decisions made with regards to SLAM, guidance and other problems, before

experimental results and documentation is presented in Chapter 5. A dis-

cussion is presented in 6, while thoughts for future work is left for Chapter

7.



Chapter 2

Simultaneous Localization

and Mapping

A short introduction to the SLAM problem was given in Chapter 1. This

chapter gives a more in depth look into some aspects of the SLAM problem,

how different techniques can help and what characterizes different solutions.

The implementation of the specific system for this thesis is left for Chap-

ter 4.

2.1 Map Representations

Several map representations are recognized for SLAM purposes, and most

of them can be put in one of two categories: landmark-based maps and oc-

cupancy grid maps [59]. Many algorithms are only able to build one of these

map representations, a fact which has consequences for software implemen-

tations – much code cannot be shared between SLAM implementations of

different kind. Exceptions do however exist, such as the SLAM algorithm

proposed in [48], which uses an hybrid SLAM method which combines grid-

based and graph-based approaches.

11
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Figure 2.1: A typical run of the FastSLAM algorithm using landmark-based
maps, presented in [43]. The line represents the robot’s estimated path, while the
dots represent the positions of the landmarks. Figure courtesy of [43].

2.1.1 Landmark-based SLAM

Landmark-based maps are based on landmarks, which are features in the

environment. Landmarks can be corners, line segments or points. An ex-

ample is presented in [43], where trees are used as landmarks, detected by

searching for local minima in laser measurements (see Figure 2.1).

The landmarks are seen as distributed in a continuous space. In other

words, each landmark is associated with a position in space, possibly with

some rotation or other properties. The landmarks are assumed to be rela-

tively sparse and unambiguous [18].

One of the aspects which makes landmark-based SLAM hard, is the

problem of associating observed landmarks with the correct entry in the

map, as illustrated in Figure 2.2. If an error is made in the data association

process, the SLAM process can suffer catastrophic consequences. If the

correspondence between observations and landmarks in the map was known,

the problem would be much simpler.

A real advantage with landmark-based maps is the compactness of the

representation. A list of landmarks takes up very little space, and is cheap

to hold in a computer’s memory. Formerly popular SLAM implementations

grow quadratically in the number of landmarks, both in terms of memory

and processing time, but more recent implementations can limit the growth
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Figure 2.2: The data association problem of landmark-based SLAM. The robot
senses two landmarks, but two different interpretations are possible. The sensed
landmarks can either be landmark A and B, or landmark B and C. When the robot
chooses one of the possible associations, this has implications for its estimated
location.

to near linear [45].

Being able to represent maps with small amounts of data, landmark-

based maps are especially well suited for constructing several map versions

at a time, allowing for multi-hypothesis tracking.

2.1.2 Occupancy Grid Maps

An alternative to the landmark mindset is occupancy grid maps, or metric

maps. While the landmark-based SLAM processes single out recognizable

landmarks, occupancy grid maps can be seen as regarding everything as

landmarks. The individual sensor measurements are assumed to be individ-

ually not very distinctive, but dense [18].

Grid maps discretize the environment into a grid – for regular maps

a grid of two dimensions. They can have a variety of different ways of

representing a cell, everything from a simple binary bit to tree structures

[18]. A common representation is a number, for example an estimated log-

odds for the cell to be occupied. Whatever the internal representation, the

main objective is to determine for each cell, if it is occupied or free.

Each cell in the grid map has a predefined location and in most cases

a predefined size. The collection of all these cells form a map, much like
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Figure 2.3: Example of output from a grid map based SLAM algorithm. The
output closely resembles floor plans, and are easy to interpret visually. Image
courtesy of [27].

pixels in a computer image. The simplest representation is to form a grid

structure upon initialization, and keep this throughout the process.

Two of the main advantages of the grid map mindset are ease of visual-

ization and the level of detail.

While landmark-based maps can be abstract, grid based maps are very

concrete and closely resembles regular maps such as floor plans, as seen in

Figure 2.3. This makes the grid maps easy to interpret by humans and

makes automatic path planning simpler [18].

Grid maps can also be created of almost arbitrary resolution, allowing

maps with high levels of detail. Given the assumption that every cell in

the map is independent on the other cells, the map can represent arbitrary

environments, which is a clear advantage.

A commonly cited disadvantage of grid maps [48, 18] is the huge amounts

of block memory they can require. Maintaining a large number of detailed

grid maps requires significant amounts of memory, even for modern com-

puters. As a result, many algorithms [54, 37] do not necessarily utilize more

than one grid map.

2.2 Sensors for SLAM

The choice of sensors for performing SLAM is large, and different types of

sensors are used in different contexts. Autonomous underwater vehicles can

use sonars, while unmanned aerial vehicles can use radar systems, infrared
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Figure 2.4: Mapping based on raw odometry. The map is highly inconsistent and
is hard to interpret. Image courtesy of Sebastian Thrun, robots.stanford.edu.,
screenshot of video demonstration Raw Data of Intel Research Lab.

cameras or other means of sensing. The focus of this thesis is on autonomous

indoor wheeled robots.

2.2.1 Range Sensors

While it is not strictly required, most autonomous mobile robots have some

form of range sensor. A range sensor can tell the distance to the nearest

object in a given direction or sector. Ultrasonic, IR and laser based sys-

tems (LIDAR) are common, while vision systems based on digital cameras

represent another alternative. An outline of how a SLAM algorithm could

work based on touch is mentioned in [11], as bug algorithms.

The range sensors form the method of detecting obstacles, facilitating

the generation of a map and location tracking of the robot relative to them,

whether the map be landmark or grid map based. The range sensors also

play a role in correction of odometric errors where odometric sensors are

present.

2.2.2 Odometric Sensors

In order to efficiently and correctly cope with more situations, many robot

designs and SLAM approaches also include odometric sensors, that is, sen-

sors which measure the distance traveled.

robots.stanford.edu
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Figure 2.5: Robot driving in a long corridor using a range sensor with limited
maximal range. Without odometry, the robot is unable to track its position in the
direction of the corridor.

In fact, a näıve SLAM algorithm could be solely based on odometry

and dead reckoning, writing range sensor readings to the map based on

the position deduced by odometric measurements. Such mapping with raw

odometry most often gives inconsistent results, since errors accumulate and

are never corrected, as illustrated in Figure 2.4.

However, some situations do require odometric input. Consider for in-

stance a long corridor, with straight walls, as sketched in Figure 2.5. A

range sensor would only be able to sense the robot’s lateral displacement

in the corridor, since there is no way to discriminate between different po-

sitions along the corridor. Odometric input can provide information about

the movements.

Even so, a case can be made that the importance of odometry has de-

clined. The main reason for this, is that odometric readings are often very

imprecise compared to LIDAR readings.

While the individual distance measurements of a LIDAR might have

higher uncertainty, there are usually so many of them, allowing for a more

precise estimate to be deduced through scan matching, comparing several

scans and inferring their relative positions. For instance, [26] reports that

the probability distribution p(z|x) is much more peaked than p(x|x′, u),

meaning the probability of obtaining the reading z given a position x is less

uncertain than the probability of the position x given the previous position

x′ and an odometric reading u.

Odometry could thus be thought of more as an hint, directing a scan

matching procedure to a region of valid scan matches, and some SLAM

algorithms can produce accurate results without odometry at all [37].



2.3. Scan Matching 17

2.3 Scan Matching

Scan matching is a concept frequently used in SLAM algorithms. For some

algorithms, scan matching is the most central aspect. Combining range

sensor measurements form one LIDAR revolution, hereafter called scans,

can be used to estimate the movement of the robot between these scans.

LIDAR scans or measurements originating from other range sensors are

represented in a coordinate system fixed to the sensor unit. When the robot

and LIDAR move, the coordinate system in which the LIDAR scans are

given is moved relative to world and map coordinates. Scan matching is the

procedure of aligning different LIDAR scans to a world or map coordinate

system, based solely on the scans themselves, or with the help of other

inputs. In this view, scan matching aligns LIDAR scans to each other, or

to a previously obtained or static map [37].

Scan matching is related to matching of geometric primitives, which is

an important problem in computer vision, required for example for object

tracking and object recognition [9].

Several algorithms are used for scan matching, for example iterative

closest point (ICP), polar scan matching (PSM) and normal distribution

transform (NDT).

Work on scan matching based localization started with ICP [37] in 1992

[9], which is a general approach for registering 3D point clouds. ICP iter-

atively matches points in one set to the closest points in other [65]. The

ICP algorithm takes as input some motion estimate between the two scans,

before iteratively using a least-squares estimation to reduce the average dis-

tance between the matched points. Using heuristics based on maximum

tolerable distances between matches and orientation consistency, ICP seeks

to eliminate false matches. ICP’s point correspondence search is however

expensive [37].

Polar scan matching assumes the scans are given in polar coordinates,

like LIDAR scans are. PSM takes advantage of this coordinate system and

does not need to perform an expensive search for correspondences [15]. A

preprocessing step is required, where the algorithm seeks to remove erro-

neous measurements and group measurements of the same object. The algo-
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rithm then alternately estimates translation and rotation until convergence

or a maximum number of iterations is reached.

Normal distribution transform scan matching models the probability

of locally measuring a point at some position by a collection of normal

distributions [9]. When matching a second set of scan endpoints and some

geometric transform between them, a measure is defined by mapping all

points according to the transform, before evaluating the corresponding local

normal distributions. The sum of these points is maximized through a

Newton’s method optimization. NDT is successfully applied to the SLAM

problem by [9], showing it can be used for mid-size indoor environments.

Two additional scan matching procedures is presented in sections 2.8.2

and 2.8.1. The first one using map gradients and a Gauss-Newton optimiza-

tion approach, the other using a Monte Carlo optimization.

2.4 Particle Filters and SLAM

Particle filters represent a scheme for estimating state probability distribu-

tions, much like Kalman filters. However, where Kalman filters represent

probability distributions using multivariate Gaussians, Particle filters rep-

resent distributions using particles. The particles can be seen as samples of

an underlying, unknown, probability distribution [45].

In a particle filter, areas of high probability will contain more particles

than areas of low probability. This is achieved by giving each particle a

weight based on how they coincide with measurements. A particle which

has a high probability of observing a measurement will be given a higher

score.

In a resampling step, a new set of particles is drawn from the previ-

ous iteration based on the particle weights. Each particle is drawn, with

replacement, by a probability proportional to its weight.

Given enough particles, this representation can approximate arbitrarily

complex and multi-modal probability distributions [45]. The latter is espe-

cially advantageous in ambiguous situations, like those which can arise when

globally localizing a robot in a known environment using range sensors. A

localization approach called Monte Carlo localization (MCL) describes this
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particle filter approach to localization.

Particle filters can use probabilistic models to propagate particles. Such

models can be parametrized, incorporating pseudo random numbers to dis-

tribute particles. This ensures particles which are alike after resampling can

differ after the propagation step.

See for instance [59] for a more in-depth description of particle filters,

or [8] for a discussion and implementation of MCL.

One of the main drawbacks of particle filters is their inability to scale in

the number of dimensions. The number of particles needed for estimation

grows exponentially in the number of dimension of the estimation – they

suffer from the curse of dimensionality.

[16] introduces Rao-Blackwellized Particle Filters (RBPFs), exploiting

the structure of the application to increase the efficiency of the particle

filter. They marginalize out some of the substructure in order to reduce the

size of the space over which we need to sample.

In the context of SLAM, a näıve particle filter implementation would see

each particle as a position together with a map, and would sample over all

possible maps and positions. The map is in this sense highly dimensional,

which is easiest to see for grid maps, where each grid cell represents a di-

mension – unknown, occupied or free. This leads to an extremely inefficient

computation.

An important effect cited in [45] is the following: error in the robot’s

path correlates errors in the map. Moreover, the correlations between ele-

ments of the map only arise through robot pose uncertainty. For landmark-

based maps, this means landmark positions could be estimated indepen-

dently, while for grid maps, uncertainty in cell classifications would only

arise through range sensor error.

Through the technique of Rao-Blackwellization, named so because it is

related to the Rao-Blackwell formula [16], particle filters can factorize the

SLAM posterior p(x1:t,m|z1:t) into a path posterior and map posteriors as

p(x1:t,m|z1:t) = p(x1:t|z1:t) · p(m|x1:t, z1:t). (2.1)

The first factor on the right hand side only represents pose estimation, and



20 Simultaneous Localization and Mapping

the second factor can be computed efficiently since the poses of the robot are

known when estimating the map. Different formulations and notations of

the equation exists, based on assumptions for example of landmarks [45, 26].

Rao-Blackwellized particle filters for SLAM utilize this factorization by

for each particle, regarding the path as known. The landmarks or the

grid map can thus be computed from a known path. For landmarks, this

means estimating landmark positions individually, with no explicit cross-

correlation.

Each particle in the filter can represent slightly different paths – samples

of a distribution of paths. The particles thus have different maps. Measure-

ments are used to weight the particles, and resampling favors particles (and

maps) which are probable.

2.5 Loop Closure and Map Inconsistencies

[28] cites loop closure as a particularly hard aspect of SLAM. It arises when

a robot traverses some cycle in the environment, and the SLAM algorithm

has to recognize the fact that the observed portion has been observed before

and which part of the constructed map it represents. In other words, the

robot has to associate currently observed data with previously observed

data.

Some SLAM algorithms handles loop closures explicitly [28], by cor-

recting backwards in time. Others have built-in mechanisms which do not

explicitly consider loop closures, but which are capable of correcting maps

in such situations [26, 45, 17]. Some SLAM algorithms does not treat loop

closures in any special way [37, 54] and must be accurate enough for the

maps not to be inconsistent.

Map inconsistencies can arise when the SLAM algorithm fails to match

new observations with old. This leads to several problems. An underlying

problem is the fact that the same physical location is represented at two

or more different locations in the map, which causes large problems for

path planning. Some of these inconsistencies can be observed as double

walls, where the same wall or object is represented twice at slightly different

locations in the map. A typical example is shown in Figure 2.6.
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Figure 2.6: After traversing a large loop of the environment, the robot meets a
previously observed area, but fails to associate the currently observed data with
the previously mapped area. Here, the result is double walls, in this case both
translated and rotated slightly. The map is thus inconsistent.

2.6 Single Extended Kalman Filter Based SLAM

Introduced in an article from 1986 [53], the single extended Kalman filter

approach to SLAM was dominant for years [45]. The approach uses a high

dimensional EKF to provide a posterior over features in the map and robot

pose. Typically, map features are implemented as landmarks, with a repre-

sentation of two states in the EKF for each landmark, plus 3 for the robot

pose, that is, 2N + 3 dimensions for N landmarks.

One problem with this scheme surfaces when maps grow large. The

complexity of the EKF representation grows quadratically, both in compu-

tational time and memory. This is a consequence of the Gaussian represen-

tation. Note that the correlations between all pairs of state variables are

maintained, so any sensor observation could affect all state variables.

When sensor readings are considered, landmark associations between

sensor data and already observed landmarks are typically done in a max-

imum likelihood way. Once the association has been made, a wrong data

association can never be undone.

This is the approach taken of the CAS Robot Navigation Toolbox, which
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was used for the LEGO robot described in Chapter 4.

2.7 Rao-Blackwellized Particle Filter Based SLAM

Some SLAM algorithms are best characterized by their use of Rao-Blackwellized

particle filters, as described in Section 2.4. The family of algorithms include

both landmark and grid map based algorithms.

FastSLAM, originally presented in [45], is a Rao-Blackwellized parti-

cle filter based approach where each particle in the filter maintains a full

posterior distribution over robot poses and maps. The original FastSLAM

algorithm is landmark-based.

The algorithm breaks up the single, large error covariance matrix of the

single Kalman filter approach presented in the Section 2.6 into one extended

Kalman filter per landmark [45].

The full algorithm considers several sets of these landmark filters. A

number of particles are maintained at a time, where each particle contains

one Kalman filter for each landmark, in addition to a Kalman filter for the

current position.

Data associations are done on a per-particle basis, which gives rise to

one of the advantages with FastSLAM. Particles with the correct data as-

sociation will tend to receive higher particle weights, and will survive in the

filter. In this way, FastSLAM tracks several data association hypotheses.

Note that the per-particle data association means that particles can have

different numbers of landmarks.

The Rao-Blackwellized particle filter based SLAM algorithms do not

necessarily explicitly cover loop closing scenarios. However, a loop closing

is a typical point where some particles will be more consistent with the

sensor measurements than other, triggering re-samplings of the particles.

Particles more consistent with closing the loop will tend to “survive”, and

more maps will from then on be based on these more consistent particles.

This scenario is illustrated in figure 2.7, which visualizes the particle cloud

shortly before and after loop closure.

Although the FastSLAM algorithm is based on landmarks, modifications

can be done in order to use grid maps. [28, 26] shows such a scheme, where
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(a) Before closing loop (b) After closing loop

Figure 2.7: FastSLAM closing a loop of the environment. Upon closing the
loop, some particles are more consistent than other, and receive a larger weight.
When re-sampling, the lower-weight particles are eliminated. Work from then on is
focused on the particles, or hypotheses, more consistent with observations. Figure
courtesy of [28].

a Rao-Blackwellized particle filter is used together with scan matching in

order to produce grid maps.

Each particle of the filter maintains an estimate of the robot pose. Addi-

tionally, the particles maintain individual maps instead of a series of Kalman

filters for landmarks. The maps are occupancy grid maps.

In order to lower the computational needs, series of LIDAR measure-

ments can be transformed into odometry measurements using scan match-

ing, while the remaining LIDAR measurements are used for mapping. Var-

ious scan matching approaches can be used [26].

Like the landmark-based FastSLAM algorithm, this occupancy grid map

version also performs multi-hypothesis tracking through its particle filter

approach. Having several hypothesis of the robot’s pose to choose from can

help with closing loops in the environment.

A drawback with occupancy grid mapping in general is the large amounts

of memory required for representing maps. This problem is amplified when

particle filters are assigning an individual map to each particle.
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[17] presents DP-SLAM, which builds further on Rao-Blackwellized par-

ticle filter occupancy grid map SLAM. By reversing the map data structure,

DP-SLAM provides a more efficient data structure for representing several

related maps.

DP-SLAM introduces the concept of particle ancestry trees, where each

particle contains a pointer to its parent. Additionally, each particle contains

a list of the has a list of the grid squares which it has updated.

DP-SLAM’s, or more specifically, DP-mapping ’s, solution to the prob-

lem of maintaining large quantities of related maps is to associate particles

with maps, rather than vice versa. The maps are constructed on a single

grid, with each cell maintaining a balance tree of references to the particles

which have made changes to that cell. The combined structure can be seen

as a tree representation of where the paths of different particles diverged,

and and can facilitate exploitation of the redundancies between the maps

[18]. According to [18], the method can maintain hundreds of maps in real

time.

2.8 Scan Matching Based SLAM

Some SLAM algorithms do not necessarily make use of particle filters, and

instead rely solely on scan matching. Two specific implementations are

described below.

2.8.1 TinySLAM

TinySLAM was developed by Steux and El Hamzaoui [54] with the goal of

developing a simple SLAM algorithm not exceeding 200 lines of C code. It is

based on the availability of odometry and a LIDAR sensor. The algorithm

is small and easily understandable, based on particle filters. The algorithm

produces grid maps.

The algorithm’s functioning comes down to two main parts: distance

calculation and map updating. It has a routine for calculating the “distance”

from a LIDAR scan to a map, given the pose where the scan was recorded,

which only considers the end points of the distance readings. An observation
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Figure 2.8: Example output from the TinySLAM algorithm, a map of the CAOR
laboratory in Mines ParisTech, as presented by the authors of the TinySLAM
paper. Image courtesy of [54].

can be made that the functioning is not unlike the scan-based sensor model

developed by Thrun and collegues and presented in [59]. Essentially, the

scheme is based on the value of each grid cell indicating the probability of

a laser beam to stop at that cell. Given the origin of the laser beam and its

length, one can easily calculate the end cell position, and through a simple

lookup determine the á priori probability that a beam should end there.

The probability is based on the cell’s distance from the nearest obstacle.

For the localization problem, this likelihood field is typically pre-computed

such that each grid cell value indicates this distance [59, 8].

TinySLAM uses odometric data to estimate where the robot was when

each incoming LIDAR reading was taken, given a mathematical model of

the robot’s movements. This initializes a scan matching procedure in the

distance calculation part of the algorithm. The scan matching procedure is

a Monte-Carlo search for the best fitting origin of the LIDAR scan, which

uses the distance calculation routine to rate randomly distributed poses in

the neighbourhood of the estimated position. After a number of iterations

are done, the pose considered which had the lowest distance to the map is

chosen.

After this pose is chosen, the algorithm goes on to write the LIDAR scan

to the map. It does so by drawing a line for each beam, with a hole around

the end point of the beam, where the value gradualy declines, reaching a
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minimum in the end point and then inclines back to the initial value before

the line drawing is completed. Over time, the this will allow the map to

approximate a likelihood field as described above.

The scan matching is done by sampling randomly from a distribution.

This means different intances of the algorithm might not produce the exact

same map, even given the exact same input data. The algorithm could be

extended to perform in a Rao-Blackwellized particle filter manner, where

each particle has its own map.

TinySLAM is released as open source software under MIT License avail-

able from openslam.org, written in C. The implementation uses a range

of different struct type definitions in order to hold data in an intuitive

manner. The code is well modularized and easy to understand when read

together with [54].

TinySLAM performs a fixed number of iterations per LIDAR scan for

it’s scan matching optimization. In general, a higher number of iterations

give a more optimal result, limited only by the computer’s resources.

2.8.2 Hector SLAM

Kohlbrecher, von Stryk, Meyer and Klingauf presents a SLAM approach in

[37], which has an implementation known as Hector SLAM written by the

authors and described in [35]. While the article presents a use case where

an inertial measurement unit is combined with a LIDAR for estimating full

3D motion (6 degrees of freedom), the implementation does not depend

on the intertial sensors. For the rest of this thesis, both the underlying

principle described in [37] and the implementation will be referred to as

Hector SLAM.

The motivations behind the development of Hector SLAM include a need

for estimating full 3D motion, which is needed in applications like Urban

Search and Rescue. In USAR scenarios typically include unstructured envi-

ronments where the unit can experience roll and pitch motion. Additionally,

there was a need for an algorithm compatible with low-weight units with

limited computational resources. The authors had a goal of enabling suffi-

ciently accurate localization while keeping computational requirements low.

openslam.org
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Hector SLAM assumes distance measurements comes from some accurate,

high-resolution and high-frequency range measurement unit like a LIDAR.

While the algorithm is designed to support full 3D motion estimation,

the SLAM algorithm performs 2D mapping, making it suitable also under

the assumption that the environment is planar.

Hector SLAM works with grid maps, and its underlying principle is scan

matching. When the algorithm starts, the first LIDAR scan is written to

the map. Subsequent LIDAR scans are matched with the map in order

to estimate some rigid transformation between them, that is, the relative

displacement in translation and rotation. LIDAR scans are written to the

map depending on criterions of a minimum displacement in translation or

rotation relative to the location of the previous map writing.

The discussion of Hector SLAM proceeds by presenting a summary of

its inner workings. For more details, the reader is referred to [37] or the

source code at [36], on which this summary is based.

The scan matching procedure is inspired by work in computer vision,

originally presented in [38]. The algorithm uses a Gauss-Newton approach

for optimization, and formulates the optimized rigid transformation as

ξ∗ = argmin
ξ

n∑
i=1

[1−M(Si(ξ))]2, (2.2)

where ξ = (px, py, ψ)> and Si(ξ) denotes the world coordinates of the end-

point of measurement i. The occupancy value M(Pm) of some coordinate

Pm is computed using a bilinear filtering scheme in order to provide sub-grid

cell accuracy.

[37] presents a derivation of a Gauss-Newton equation ∆ξ, minimizing

Equation 2.2 as

∆ξ = H−1
n∑
i=1

[
∇M(Si(ξ)) δSi(ξ)

δξ

]> [
1−M(Si(ξ))

]
(2.3)

with Hessian matrix

H =
[
∇M(Si(ξ)) δSi(ξ)

δξ

]> [
∇M(Si(ξ)) δSi(ξ)

δξ

]
. (2.4)
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Figure 2.9: Illustraton for some of the aspects of the filtering of obtaining sub-
grid cell accuracy. The coordinate Pm lies somewhere within the grid cell centers
P00 through P11, and its value can be approximated through a weighting of these
values. Figure courtesy of [37].

Equations 2.3 and 2.4 rely on ∇M(Pm), the gradient of the map at some

coordinate Pm. The gradient can be approximated via bilinear filtering

of the four closest integer coordinates in the map P00, P01, P10 and P11,

representing the midpoints of the surrounding map cells of Pm. The gradient

can be approximated as

δM

δx
(Pm) ≈ (y − y0)[M(P11)−M(P01)]

+(y1 − y)[M(P10)−M(P00)] (2.5)

δM

δy
(Pm) ≈ (x− x0)[M(P11)−M(P10)]

+(x1 − x)[M(P01)−M(P00)], (2.6)

where x, y, x0, x1, y0 and y1 are the map coordinates of the integer values P ,

as illustrated in Figure 2.9. The approximation assumes x1−x0 = y1−y0 = 1

in map coordinates.

An approximation of the match uncertainty can be computed as the

inverse Hessian scaled by some sensor specific constant: R = σ2H−1.

Further optimizations of the scan matching procedure is achieved through

another approach inspired by computer vision and image processing. Since

the procedure is based on gradient descent, getting stuck in local minima
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(a) 20 cm cell sides. (b) 10 cm cell sides. (c) 5 cm cell sides.

Figure 2.10: Image pyramid like structure of Hector SLAM. The same map is
generated and stored at different resolutions. Images courtesy of [37].

is a source of error. Hector SLAM seeks to minimize these effects using a

structure similar to image pyramids, where the map is stored at different

resolutions, as illustrated in Figure 2.10.

The scan matching is done at all the levels of the image pyramid like

structure, starting with the coarsest. As the matching works its way towards

the finest representation, the position estimate ξ̂ is assumed to be more

precise. The estimate from one layer is passed on as the start estimate for

the next. Note that the generation of the different layers is not done by

downsampling, but by writing scaled versions of the LIDAR scans to each

map, which is more computationally effective and ensures consistency across

layers.

Odometry or other sources of position data can be used to help the

scan matching procedure as a start estimate for the scan matching. The

estimation can be done with Kalman filters or other methods sensor fusion.

The results of the scan matching can help in the other direction, correcting

this scheme.

An example output of the Hector SLAM algorithm is presented in Figure

2.11. As the figure shows, the loop in the environment was successfully

closed, even though the algorithm does not include an explicit handling of

loop closures.

The Hector SLAM algorithm shows promise as an accurate and relatively
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Figure 2.11: Example output of the Hector SLAM algorithm overlayed with
ground truth data. The LIDAR sensor used for the experiment was an UTM-30LX
LIDAR unit from Hokuyo. Image courtesy of [37].

simple approach to the SLAM problem. Its loose coupling with odometry

data adds to its flexibility as a part of a larger system software. According

to [37], it uses less than half of the available processing power of a cheap

Atom Z530 CPU, demonstrating its low computational demands.



Chapter 3

Sensors

In order to fulfill the goals of map generation, localization (SLAM) and

guidance, the robot would need several sensors to supply it with measure-

ments. As part of the problem description, a suitable set of sensors for the

robot had to be decided, within budget limits. The material presented in

this chapter builds on Section 2.2.

The sensors should enable the robot to perform the tasks mentioned,

within reasonable limits. One requirement is that they should enable the

robot to generate maps. Other requirements include ensuring that the robot

can potentially be operated autonomously by being able to detect obstacles

and collisions, both for safety and for efficient operation.

Some types of obstacles were however not considered, such as tables and

downward stair cases.

Paying special attention to making sure the sensors are suitable for solv-

ing the SLAM problem, research into what alternatives exist and their prop-

erties are described in the following section.

Most SLAM approaches assume at least two kinds of sensors to be in

place: distance sensors and odometry, see e.g. [62, 59, 18, 28]. Distance

sensors give an estimate of the distance to obstacles, usually in several

directions simultaneously, while odometry provides an estimate of how the

robot has moved from the last time step, and throughout the execution of

the robot software.

Drawing from conclusions and research presented in the previous sec-

31
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tions, it was seen as beneficial for the robot to be equipped with both range

sensors and odometric sensors.

3.1 Discussion of Range Sensors

Popular distance sensors include infrared distance sensors, ultrasonic dis-

tance sensors, LIght Detection And Ranging (LIDAR) sensors and camera

(computer vision) sensors. Their goal is to provide an instantaneous local

map of the robot’s surroundings. Each sensor type has different abilities and

limitations. We proceed by discussing the alternatives mentioned above.

3.1.1 Vision Based Sensors

The robot was already specified to include two web cameras, as described

in Chapter 1, with a main goal of providing aid for operators to control the

robotic arm, and also for manual driving modes. Since the web cameras are

cheap and already required, they would provide a low cost alternative for

range detection. Having two web cameras, it’s possible to detect range even

without movement of the robot, through stereo vision; see e.g. [58].

One advantage with vision based systems is their ability to register 3D

information. Reconstructing the 3D environment, they have the ability to

collect data in the height direction, making it possible to detect e.g. a table,

which has a small footprint, but depending on its height, it might not be

safe to drive between the table legs.

Several factors also make the vision based alternative less attractive, of

which the largest are accuracy, calibration and the nature of the measure-

ments.

The robot’s onboard computer is relatively fast and judging from [49]

and [12], they should be able to facilitate localization in real time. However,

the maps they produce seem to be of lesser quality than maps produced by

LIDAR sensors (see e.g. [19] for examples), and the software required is

inherently more complex than that for other sensor types [49].

Vision based systems have to be accurately calibrated [58]. The system

needs to know the configuration of the two cameras relative to each other
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and relative to the robot. In the case of the robot in question, the web

cameras were mounted on a robotic arm. This means they were moving

relatively to the robot. It would make the system more complicated if their

position relative to the robot had to be estimated.

Even with dedicated cameras for SLAM, the setup seems more prone to

errors in misconfiguration. Initial tests also showed the robot was shaking

when driving, amplified for the higher parts of the robot, where the cameras

were mounted.

3.1.2 Infrared and Ultrasonic Sensors

Infrared and ultrasonic distance sensors were very popular some years ago

[49], and are still used for some applications [62], mainly because they are

small and very cheap. Some of their limitations include the width of their

cones of measurement, which can be up to 30◦ [49]. They are also prune to

multipath reflections and cross-talk between sensors, leading to erroneous

measurements [51].

Given the low angular resolution of these sensor types, they seem more

suitable for SLAM in small environments like tables and small rooms. This

assertion is supported by some of the work done for SLAM with such sensors

in recent years, like [3], which uses such sensors to map an area of 2× 1 m.

While their results are impressive for a small robot with cheap sensors, the

maps do not seem accurate enough to map large areas.

3.1.3 LIDAR Based Sensors

A LIDAR sensor unit uses laser light to measure the distance to surround-

ing objects. They are sometimes called “laser radars”, because the sensor

output data can be compared to that of a radar. LIDAR units exists which

can measure distances in some plane, a cone or several cones, which are

used in “high end” applications like [42].

In recent years, LIDAR sensors have become cheap enough to become

popular for many applications, even in consumer products such as the Neato

Robotics autonomous vacuum cleaner range [1]. They can be very precise,

with an error of only a few per cent over distances as large as 80 meters or
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more (e.g. SICK LMS5xx [4]). They can measure houndreds of distances

several times per second.

A LIDAR sensor would be the most costly alternative. The cheapest

LIDAR sensors on the market currently goes for around 1000 USD, an order

of magnitude above many cameras. However, it also seems to be the most

accurate for planar (2D) map generation and the most reliable for detecing

obstacles. While they supply a considerable amount of data points, several

thousand per second, much information can be extracted from the readings

without pre-processing them. Detecting the existence of an obstacle in the

forward direction can be done simply by looking at the distance in that

direction.

LIDARs do not suffer from cross-talk, and multipath does not occur

often. They can give false readings when pointed at a mirror, window or

when facing a matte black surface, but their overall performance seems

reliable and predictible [8].

LIDARs are popular for use in SLAM research, with a large body of

articles using them as their main sensor.

3.1.4 Suitability For Different SLAM Strategies

As mentioned in the introduction to SLAM in Chapter 1, there is a divide in

the world of SLAM algorithms between landmark-based algorithms and grid

based algorithms: the first must extract features from the measurements

and match them between consecutive measurements, the last discretizes

the world and tries to reveal the nature of each cell in some grid.

One goal for choosing sensors is to choose for the future, meaning we do

not want to limit the system to use a specific strategy for its software. It

was desirable to choose sensors which enabled both SLAM strategies. See

Table 3.1 for a comparison.

To summarize the table, it seems the only bad fit is vision based SLAM

with metric maps. Most of the work for vision based SLAM is directed to

landmark-based SLAM approaches. One reason might be that the amount

of data would be very large for large environments.
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Sensor
Type

Landmark-based Grid map based

Vision Yes. Examples: [7, 12] No, although some work ex-
ists, e.g. [20] (uses Kinect-
style camera).

IR /
Ultra-
sonic

Yes, see e.g. [62, 3] Yes, but very inaccurate [59,
10]

LIDAR Yes, see [45, 44] Yes, see [28, 27, 18, 1, 37].

Table 3.1: A comparison how different sensors perform with different map repre-
sentations for SLAM.

3.1.5 Other Considerations

Among other considerations when choosing a range sensor, we can look at

their abilities to enable the robot to navigate without accidents.

For avoiding walls or wall-like objects, LIDARs and IR/ultrasonic sen-

sors should have no problems, although LIDAR can fail to detect a window

or in extreme cases matte black walls or objects.

LIDARs which only measure in one plane would also fail to detect

downward-going staircases or other “cliffs” in the environment, which could

lead the robot to drive down such a staircase. Vision based systems could

be able to detect such obstacles. Because IR and ultrasonic sensors are so

cheap, several of them could be bought and placed downward to detect such

obstacles. The same can be said for obstacles like tables, where some plane

near the ground might seem like a free area, but where the robot might not

fit under.

3.2 Discussion of Odometric Sensors

Odometric data for robotic vehicles is usually obtained from rotary encoders

attatched to the robot’s wheels. When the wheel turns, the encoder gener-

ates signals interpreted as a rotation in a direction. An odometric reading

consists of the amount of such signals registered in a time interval, from

which software can easily obtain an estimate of the motion of the robot
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in that time interval. Odometric data can also be obtained from an iner-

tial measurement unit (IMU) [37], which is particularly useful for robots

without wheels.

This can be used for dead reckoning, calculating an estimate of the

robot’s position relative to the previous time frame or the robot’s start-

ing point.

Odometric readings from driving wheel-attatched encoders suffer from

several problems, such as wheel slip. An alternative is to have separate

wheels for the encoders, which are not attached to motors. Since these

wheels do not drive the robot, their slippage will be very small.

They will also be suitable for detecting crashes. If the robot were to

crash, the driving wheels might still turn, spinning on the ground. If we

know that the control signal to the motors is such that the wheels should

turn, but the odometric data indicate that we are infact standing still, this

is a sign that the robot’s path is obstructed and the robot’s motors should

be switched off.

3.3 Sensor Decisions

It was decided that the most “future proof” approach, with future projects

and students in mind, was to equip the robot with both odometric and

range sensors. This would provide a hardware basis for many different

SLAM algorithms.

3.3.1 Range Sensor

When considering which range sensor the robot should be equipped with,

infrared and ultrasonic sensors were excluded first, because of their lack

of accuracy. It was assumed to be of benefit for the project and for fu-

ture students improving the software if the sensors provide more accurate

measurements than what seems possible with infrared or ultrasonic sensors.

When deciding between LIDAR and camera based systems, future projects

were again taken into account. The measurements from a LIDAR are very

easy to interpret and requires little post processing. On the other hand,
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Figure 3.1: The URG-04LX-UG01 LIDAR unit by Hokuyo, an entry level LIDAR
recommended for use with autonomous robots by the manufacturer, as mounted
on the robot.

vision based systems need relatively complex software for post processing.

LIDAR measurements provide the easiest means of knowing that the

robot isn’t driving into an obstacle in the plane of measurement. Vision

based systems could possibly detect more obstacles, but also seem more

error prone.

In the end, a LIDAR based system was chosen.

3.3.2 LIDAR Sensor Unit

An URG-04LX-UG01 LIDAR unit from Hokuyo Automatic Co.,Ltd was

mounted on the front center of the robot. The unit is an entry level planar

scanning range finder, which the manufacturer recommends for autonomous

robots. Its technical document [32] cites the following specifications:

� 240◦ scan angle with 0.36◦ resolution, giving a total of 681 distances

per measurement output.

� 5600 mm maximum distance, with an accuracy of ±3% in the interval

above one meter and ±30 mm in for shorter distances.

� 100 msec/scan time, giving measurements at 10 Hz.

� Weight of approximately 160 g and a footprint of 50× 50 mm with an

height of 70 mm.
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Figure 3.2: The encoder wheels as mounted on the robot.

Its laser is of class 1 safety, infrared 785 nm wavelength, and is completely

safe to use without eye protection.

The LIDAR was mounted on the front center of the robot, carefully

positioned so that no parts of the robot itself was obstructing its sector of

measurement.

With an accuracy of ±3%, the accuracy at 4 m is ±120 mm. While

the accuracy is limited, its high angular resolution and update frequency

are helping factors. LIDAR units with higher accuracy and maximum range

are available, and would improve the performance of map generation and lo-

calization. However, such units was not within budget limits of this project.

3.3.3 Discussion and Choice of Odometric Sensors

Although equipping the robot with an IMU would provide many options

and interesting oppourtunities for future work, wheel encoders were chosen

because they provide simple interfaces for the software and because they are

cheap. This decision was done in cooperation with the student which was

given the task of mounting the encoders and providing an interface between

the encoders and the robot’s PC.

The robot was equipped with two wheels used for obtaining odometric

data via rotary encoders. They are mounted on the left and right side at

the approximate axis of rotation. Their data thus represent how the wheels

would have behaved if this was a true differential wheeled robot. A picture
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can be seen in Figure 3.2.

The encoders attached to the odometry wheels have a resolution of

200 pulses per revolution, grey coded to support both increments and decre-

ments. With a diameter of approximately 10 cm, this implies approximately

600 pulses per second when driving at 1 m/s, a good enough resolution for

most applications.
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Chapter 4

Implementation

In order to fulfill the specifications of the problem description, a software

system capable of on-line and off-line SLAM, with path planning, guidance

and manual control of the robot was implemented. This chapter covers a

number of decisions made for providing this functionality, both with re-

spect to providing the best short-term results and for providing a solid base

products for future work.

Throughout the chapter, details of the code implemented is presented.

The chapter can serve as a discussion of design decisions, a walk through

of code principles and implementation, and as a manual for future develop-

ment.

4.1 Language, Environment and Operating Sys-

tem

One of the very first decisions had to be made with respect to the platform

on which the implementation should be carried out. A choice had to be made

whether or not to build upon already available software, which programming

language should be used and which operating system should be targeted.

When the project started, past projects had already developed a SLAM

environment for LEGO robots as described in Subsection 1.5.1, which could

be built upon. Also available was Robot Operating System (ROS), which

41
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provides a wealth of libraries and tools for robot applications, including

SLAM, path planning and guidance.

The LEGO robot project was based on MATLAB uses a landmark-

based SLAM algorithm developed from the CAS Robot Navigation Toolbox.

Sensor schemes included IR-sensors, ultra sonic sensors and web-cameras,

but the accuracy presented in articles seemed to show limited accuracy,

as seen in Figure 1.3. The LEGO project was also focused on small-scale

robots and environments.

In order to develop from the LEGO robot system, adaptations for use

with a LIDAR scanner would have to be made in order to gain precision

and accommodate larger-scale environments. To the author’s knowledge,

no work of such kind had been carried out before on the LEGO project.

The SLAM algorithm and maps of the LEGO project was of the landmark-

based type, and further development of this software would likely be locked

to this paradigm. The system architecture was based on computations to

take place at a computer not on the robot itself, and the single EKF based

SLAM algorithm was presumed inefficient for large environments with its

quadratic growth. See also the first parts of Section 4.5.

Developing further on the LEGO project software was therefore ruled

out as a platform candidate.

ROS was a more seemingly more fitting candidate. Available from

ros.org under an open source, BSD license, the meta-operating system

can be modified to accommodate many needs [13]. Containing tools includ-

ing drivers, libraries and visualizers, the user can pick and choose between

modules in order to set up a system fitting her needs. A range of different

SLAM algorithms, like Hector SLAM and the Rao-Blackwellized particle

filter based grid mapping algorithm GMapping are readily available.

ROS provides visualization modes like RVIZ, a 3D visualization envi-

ronment where the robot and map can be displayed in real-time. The user

can control the robot manually or via path planners.

ROS includes a runtime graph communication system, a peer-to-peer

network of processes using the ROS communication infrastructure. The

framework seeks to support code reuse in robotics research and development.

An open question is the user friendliness for end-users. ROS robots

ros.org
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are controlled via applications running on the user’s hardware, which poses

requirements on the client platform. The main goal of ROS is stated to be

within research and development, not explicitly to provide an easy-to-use

interface.

According to [13], ROS was at the time of writing only running on Unix-

based platforms, primarily tested on Ubuntu and Mac OS X.

On the contrary, the project for this thesis was planned to include a

robotic arm attached to the robot. According to [6], the control software

for this arm posed implications for the choice of operating system: it could

only run on Microsoft Windows based platforms. Plans for the physical

implementation of the system included only one powerful computer. While

running two different platforms on the same computer is possible through

virtualization, such a scheme complicates the project and could impair per-

formance. It was thus decided that the most optimal choice of operating

system for the robot as a whole was Windows.

With a wish of providing an integrated and intuitive, user-friendly,

platform-independent interface in compliance with other software running

on the same computer, a choice was made not to base the software on ROS.

With this established, a new choice had to be made on what programming

language to use.

A wide range of suitable programming languages are available. Using

C++ and POSIX poses some special advantages, as much code is readily

available or can be interfaced, for example from the ROS project. The

NTNU Eurobot team also used this combination from 2004 to 2010 [50].

Some of the drawbacks of using C++ is the need for dealing with low-

level operations like memory allocation. Also, dealing with threads can be

cumbersome.

Another option is to go for Python, which is a dynamic language of-

ten used for scripting, although programs can be compiled to executables.

Python has a module for thread-based parallelism [24], making thread based

programs easy to implement. Python drawbacks include its performance.

The Computer Language Benchmarks Game serves as a comparison of pro-

gramming languages’ performance, memory use and code length, available

at benchmarksgame.alioth.debian.org. Here, C++ g++ is over 50 times

benchmarksgame.alioth.debian.org
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faster than Python 3 in some of the tests. Python’s dynamic typing typing

can also lead to static errors at runtime.

A more recent addition to the world of programming languages is Go,

often referred to as Golang. Go is a Google-maintained open source lan-

guage. Go has been successfully used by the NTNU Eurobot team [8, 50].

It has good constructs for concurrent programming and error handling [46]

as part of the language, and features channels, a built-in message passing

system. While statically typed [2], the language attempts to make types feel

lighter weight than in typical object oriented languages. It also has some of

the other benefits of typical scripting languages like Python, in it’s rich list

of packages simplifying for example image handling and writing web servers.

Go also includes built-in tools for interfacing C code. With regards to the

benchmark game mentioned in relation to Python, Go scores comparably

with C++ in most tests.

While C++’s benefits of ROS code reuse and performance were appeal-

ing, Go was chosen as the primary language of the code to be implemented.

The new language was expected to simplify the development phase com-

pared to C++, while also providing good performance and simple mechan-

ics for concurrency. The choice also allowed for reuse of modules from the

NTNU Eurobot project, and could in the future contribute to that project.

In conclusion, it was decided that a software solution for the project

was to be written in Go, targeting the Windows platform, without building

explicitly on some preexisting environment like ROS.

4.1.1 Short Introduction to Go

For the further discussion of the implementation, a short introduction to

Go is provided for readers unfamiliar with the language. More detailed

introductions are given in [50] and [46], while even more information can be

found on the language’s official website golang.org and the documentation

in [2].

Go is a strongly typed language [50], where all casting is explicit. This

means explicit casting must be done even for converting for example a

float32 to a float64 number. Conditions for if statements must be booleans,

golang.org
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so using an integer as condition is a compile-time error.

Moreover, the language features structs, much like C, but unlike C, the

structs can have methods. There is no explicit inheritance, but a structure

can be an anonymous part of other structures, allowing other code to access

the anonymous field as if it was part of the struct.

1 func functionName(x int , r float64) int

2 func (s *StructName) methodName(b bool) (int ,

error)

Listing 4.1: Go function and method signatures.

The Go function and method signatures are on the forms shown in List-

ing 4.1. Notice that the data types come after the variable names, and that

a function or method can have several return values. Methods are defined

outside the structure on which they work, by declaring a method receiver

between the func keyword and the method name.

Go also has interfaces, which consist of a series of methods. The code

does not explicitly declare what interfaces some struct satisfies – any struct

fulfilling the interface’s needs is allowed.

Go has built-in concurrency, via it’s “title keyword” go. Any function

call preceded by the keyword will run in it’s own goroutione, concurrent

with further execution of the calling code. Goroutines can be thought of as

“lightweight threads” [2], and are handled by an internal scheduler.

Message-based communication is built in via channels. Channels pass

some data type in one or both directions. Both sending to and receiving

from a channel can block, which provides simple means of synchronization.

Go code is modularized into packages, which can have sub-packages.

Packages can be imported from some local source, or via some remote source

over the Internet. For example, importing the matrix package go.matrix

simply by the URL of its repository github.com/skelterjohn/go.matrix

is allowed.

Go is garbage collected, meaning memory is freed automatically once it

can no more be referenced from the runtime.

Go also has built-in features for package testing and benchmarking via

github.com/skelterjohn/go.matrix
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code-declared tests and benchmarks, and automatic compilation of code

documentation from code and comments.

4.2 Controllers

A central controller for the system was implemented for centralizing the

coordination of the execution. The central controller structure Controller

can be used to access several sub-controllers, like SlamController, SensorController

and MotorController.

The central controller can be thought of as holding the global state of the

system. Thus, it also includes an instance of model.Robot, a mathematical

model of the robot currently used, for sub-controllers to leverage.

4.3 Sensor Module

The sensor module standardizes and centralizes control of sensors and sensor

data, implemented in the sensors package.

The package includes a SensorController structure, which is used to

provide a list of available sensors. It can also tell the status of the individual

sensors, for example if they are connected or currently running (producing

data).

All sensor drivers must implement a common Sensor interface, standard-

izing interaction. The interface specifies methods such as Start(), Stop(),

Connect() and Disconnect(), along with some methods for acquiring sen-

sor meta data and status. Sensor drivers are currently implemented as

sub-packages of the sensor package; lidar and odometry. A structure

BasicSensor provides common features from which sensor drivers can be

built.

Sensors exploit Go’s channel objects in order to distribute the data

they acquire. Each sensor has methods Subscribe() and Unsubscribe(),

where the first returns a channel and the second takes a channel as input

and terminates distribution over that channel.

Sensor reading is initiated by the sensor itself, for example at regular

intervals or whenever new sensor data is available. The measurement is
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distributed to all entities which have a subscription. If some subscribing

entity has not received the previous sensor reading, the new sensor reading

is discarded. Note that discarding happens on a per-subscription basis, so

that one misbehaving entity does not block for the entire system.

The implemented LIDAR sensor driver uses the original C driver pro-

vided by the manufacturer. The C-code is compiled and produces libraries

which the Go code links to via Go’s cgo package.

The odometry driver communicates with the encoders via a serial port

over USB.

The sensor module also includes two sub-packages logging and logreader

, which deal with the storing and reading of sensor log files. Such files are

specified to a comma-separated values (CSV) format, where each line begins

with a sensor identifier and a time stamp. Note however, that sensors are

free to specify an arbitrary number of values.

The logging package logs all sensor data in such files, in a sensor specific

format provided by the sensors themselves through methods described by

the Sensor interface. Sensors should encode their data such that the reading

can be fully restored.

The logreader package is capable of re-constructing these sensor read-

ings in a similar fashion. It can also play back sensor log files in real-time,

so that a recorded scenario can be “re-lived”. The rest of the system is

agnostic to whether sensor readings are originated from the sensor itself or

from the log reader.

These two packages are useful for development and tuning, because they

allow for comparing the outcome of different SLAM algorithms, implemen-

tations and tuning parameters through near perfect repeatability.

4.4 Motor Module

The motor package was implemented for setting control signals to the con-

nected motors. It includes a MotorController structure used for centralized

communication.

Central to the package is a sub-package driver, which communicates

with the motor controller card over a serial interface. However, the motor
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package also features a wrapper over the driver. This wrapper provides

easing so that the actual control signals sent to the motor do not change

too quickly. The easing is implemented as a P-controller, where commands

are set as reference values and the P parameter is configurable.

The driver and wrapper provides a method SetSpeeds(), where the

arguments are floating point numbers indicating relative speed settings in

the interval [−1, 1] for the left and right hand side motors. The motor

controller card does not provide explicit setting of angular velocity, and

though this could have been implemented through a tuning parameter, this

was not regarded as important.

Due to frequent failures of the motor controller card under testing, the

motor driver was implemented such that it automatically reconnects if con-

nection is lost. Thus, the SetSpeeds() method can be called without ex-

plicitly initiating a connection.

The MotorController also features functions for initiating path follow-

ing and path planning. A small package collisionavoidance was written.

The MotorController instantiates a CollisionDetector object from that

package, which provides channels communicating that some object is de-

tected in some configurable sector in front of the robot. In path following

mode, the MotorController responds by stopping the robot, backing up

slightly and waiting a configurable amount of time. If the obstacle still per-

sists, the MotorController will initiate planning a new path to the goal

location.

4.5 SLAM Module

SLAM is a central part of this thesis, and much time and concern was

devoted to the implementation of the SLAM parts of the software. A SLAM

approach had to be chosen, from the rich body of approaches presented in

literature of recent years.

The choice with the largest impact was to choose between landmark-

based and grid map based SLAM. As discussed in Section 2.1, the choice

has implications for other aspects of the system, with path planning being

one of them.
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The outcome of the decision was dependent on the problem description

and the use cases of the system. For the robot to be controlled remotely,

but manually, it is central to have maps which are easily interpretable by

humans and which allow for effective and reliable path planning.

Landmark-based algorithms do not necessarily mark areas as free to be

navigated, and are harder to visually interpret. Additionally, [18] regards

grid maps as better suited for path planning.

A choice was therefore made to develop the system for grid map based

algorithms.

Among the grid map based algorithms, the largest division is between

Rao-Blackwellized particle filters and the simpler algorithms which only

considers a single hypothesis. Points of consideration include demand for

computational resources, suitability for navigation, code complexity and

reliability.

Assuming maps should be of a resolution down to the error of the LI-

DAR, memory usage quickly arises as an issue. A map of 100× 100 meters

with a resolution of 1 cm has 108 cells and amounts to approximately 400 MB

when using 32-bit representations. Rao-Blackwellized particle filter based

methods hold many of these at a time, which means very high memory

demands.

Solutions like DP-mapping could lower the demands, but comes at a cost

of high code complexity and raises the learning curve for future work. In-

deed, the open implementation of DP-SLAM was found to be of low quality

and hard to understand.

Another complexity which comes from multi-hypothesis tracking has

consequences for navigation. If the particle with the highest weight is always

used as a position and map estimate, the position and map could change

rapidly and cause inconsistencies with the planned path. A method could be

to track one hypothesis while traversing, but the survival of the hypothesis in

the particle filter cannot be guaranteed. Note that solutions to the problem

would break the modularity of the code. In other words, a guidance module

would have to consider the inner workings of the SLAM module.

Note also that several single-hypothesis algorithms could be extended

to track several hypotheses. This is already mentioned for TinySLAM. A
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requirement is for them to be probabilistic, so that the different hypotheses

do not stay exactly alike.

Although multi-hypothesis tracking gives advantages in scenarios like

loop closing, and can overall be less prune to produce inconsistent maps,

a decision was made to focus on single-hypothesis mapping for this thesis.

The main reasons were complexity of code and modularity.

An interface Slam was written, which every implemented SLAM algo-

rithm must fulfill. The approach allows for several SLAM algorithms to be

interchangeable, and requires methods like GetPosition(), returning the

current position, and GetMapImage() which returns an image representation

of the current state of the map.

4.5.1 TinySLAM

In order to provide a starting point for initial tests, the TinySLAM algo-

rithm was implemented for the system. As discussed in Subsection 2.8.1,

the algorithm is small, easy to understand and works with grid maps. Its

underlying principle is scan matching.

The original implementation [55] was translated to Go and fitted into

the rest of the system as a SLAM module, fulfilling the Slam interface. A

structure TinySlam holds the overall state of the SLAM process.

Support for odometry was not integrated in the Go implementation be-

cause odometric data was not available at the time.

The algorithm was tested with a data set from the Intel Research Lab

in Seattle, available from radish.sourceforge.net [33]. The result can be

seen in Figure 4.1.

In order to arrive at such a result, the algorithm had to be allowed to

utilize 10 000 iterations for each scan matching. Even if odometry had been

integrated, the number seemed too large for the algorithm to feasibly run

in real-time.

The maps of TinySLAM have “blurry” walls, a result from the algo-

rithm’s scan matching approach further discussed in Subsection 2.8.1.

Seen in relation with the quality of the map, a decision was made to

halt further development of the TinySLAM implementation, and look for

radish.sourceforge.net
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Figure 4.1: The Go port of the TinySLAM implementation, running an excerpt
from a publicly available data set. The SLAM algorithm was allowed to use 10 000
iterations in each scan matching step, but did not produce a consistent output, as
can be seen from the double wall to the right.
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other approaches which could generate similar or better results with less

computational power. The TinySLAM code is still integrated in the system,

although some work has to be done in order to make it work with the rest

of the system, which has been developed further.

4.5.2 Hector SLAM

As mentioned in Subsection 2.8.2, the SLAM approach introduced in [37] is

available as open-source software at [36], in C++. Though the implemen-

tation is of considerable size, it was found to be easily understandable and

maintainable. The implementation was highly modular, clearly defining the

purpose of each module.

The system discussed in this thesis was implemented in Go. Schemes

exist for compiling C++ with Go code [14]. However, they complicate inter-

action between code in the two languages, which makes it harder to improve

on the implementation. Combining this with an assumption that the rest of

the system could benefit from aspects of the Hector SLAM implementation,

it was decided that the implementation was to be ported to Go.

Moreover, a decision was made to make the ported Hector SLAM im-

plementation independent on all other code, in order to make it possible to

release the code as a stand-alone project.

The original and ported implementations feature a modular implemen-

tation of grid maps. A MapDimensionProperties object lies at the core of

each map, specifying the map’s cell length (resolution) and dimensions in

world and map coordinates.

Grid map cells implement an interface Cell, which is free to represent

the cell by any means, providing the representation can be converted to

a floating point number for comparison. They also specify IsFree() and

IsOccupied() methods returning boolean values. Note that these methods

are not opposite – both can be false at the same time, meaning the cell’s

occupancy is unknown.

All grid maps must implement the interface GridMap, which is done

simply by extending the structure GridMapBase. Occupancy grid maps

implement OccGridMap, where GridMap is a subset of the requirements.
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Many occupancy grid maps can do this by extending the OccGridMapBase

structure.

Finally, the standard Hector SLAM implementation uses OccGridMapLogOdds

maps, which is an OccGridMap representing cells by the approximated log

odds that the cell is occupied. The structure’s implementation is small, and

most of its functionality is inherited from the base structures – illustrating

that other cell representations could have been introduced easily.

A feature was introduced in the port which is not present in the original

C++ implementation, rendering PNG images from maps. The package

mapimages creates three-color images, where cells are either free, occupied

or unknown. The package can generate whole map images or generate tiles

of 256×256 pixels representing a part of the map, with a specific zoom level.

The latter is inspired by the Google Maps JavaScript API [25] and is useful

for graphical user interfaces.

Hector SLAM has an interface MapRepresentation where an extra layer

of abstraction is facilitated. The image pyramid-like functionality of the

scheme explained in Subsection 2.8.2 lies here, with a structure MapRepMultiMap

, which has a number of maps, matching each LIDAR scan to each of them.

During porting, a bug in the original C++ code was discovered in the

multi-map representation, causing it not to utilize the full power of the

scheme. The bug was confirmed by one of the co-authors of the original

article [37] via e-mail. The bug involves how scan matching is performed

with multi-layered maps, and was reported to the Hector SLAM project’s

bug tracker1.

The HectorSlamProcessor structure represents the top layer of the Hec-

tor SLAM implementation, and is the structure which other code primarily

should interact with. It is responsible for initializing and maintaining all

substructures, builds and provides map data, and for obtaining current po-

sition estimates.

1https://code.google.com/p/tu-darmstadt-ros-pkg/issues/detail?id=4 Note
that at the time of writing, no response has been given in the bug tracker.

https://code.google.com/p/tu-darmstadt-ros-pkg/issues/detail?id=4
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4.5.3 Odometry Integration

As mentioned in Subsection 2.8.2, Hector SLAM in itself does not integrate

odometric information. The algorithm only considers range measurements,

typically from a LIDAR unit.

This is not to say that information from other sensors can’t be used

to improve its accuracy. Every scan matching step of the algorithm ac-

cepts a position estimate as input, acting as a start point for the matching

procedure. A better initial estimation could result in more reliable scan

matching.

The information on which a better estimate can be made include both

the SLAM process itself and other sensors. The original article [37] presents

a method using an inertial measurement unit (IMU), using an extended

Kalman filter to integrate the measurements. This report considered only

odometric sensors. From the SLAM process alone, an estimation can be

obtained by considering the speed of the robot and its mathematical model.

An extended Kalman filter was implemented, with five states:

x =
[
x y θ vl vr

]>
, (4.1)

where the first three states represent the robot’s position, and the latter

two are ground speeds of the left and right odometry wheel, respectively.

The filter is updated by scan matching from the SLAM process and from

odometric measurements.

Since the measurements cannot be assumed to arrive in a synchronized

manner, some extra precautions were taken. When propagating the previous

state, vl and vr are considered in order to predict the current position, along

with the difference in time from the last update ∆t. The time stamp from

the sensor reading is used in order to provide this time difference.

For odometry updates, a mathematical model of the robot is used in

order to generate an estimation of the full state, by dead reckoning based

on the last update.

Updates from the SLAM process come in as estimates of the robot’s pose

[x, y, θ]>. Rough estimates of the left and right wheel speeds are computed
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to obtain a full state estimate.

The update step discriminates between updates from the two different

sources by manipulating the computed Kalman gain matrix K. For the

odometry update not to affect the covariance error estimates of the posi-

tion, the upper three lines are set to zero. Likewise for the SLAM position

updates, the lower two lines are set to zero.

When a new LIDAR measurement arrives, triggering a SLAM iteration,

a position estimate is fetched from the Kalman filter, propagating the po-

sition based on estimates vl and vr considering the time since last filter

update.

The original Hector SLAM article [37] cites another way to integrate

SLAM position updates in such a Kalman filter, using covariance intersec-

tion. The method is thoroughly described in [34]. The purpose is to prevent

overconfident estimates. This method was also implemented, but without

success. Sufficient documentation could not be found. The resulting error

covariance matrix was often ill defined and SLAM results were poor.

Prior to implementing the Kalman filter, a much simpler approach was

taken, only using any odometry arriving between the SLAM updates to

propagate the last position estimate. While successful, the approach seems

less rigorous.

4.5.4 LIDAR Scan Correction

As specified in Chapter 3, the LIDAR used produces scans at 10 Hz. Note

however that the scans are not instantaneous, the individual distance mea-

surements of the scan are not taken at the exact same point in time.

No specific data on this concerns could be found in the LIDAR’s specifi-

cations [32], other than that the laser rotates in counter-clockwise direction.

Assuming it maintains a constant speed, one scan is taken over a duration

of 240◦/360◦ × 0.1 ≈ 0.067 seconds. This means the robot could have trav-

elled approximately 6.7 centimeters between measurements in an individual

scan, assuming a speed of 1 m/s.

A scheme for correcting for this effect was constructed based estimated

states from the EKF described in the previous subsection. The important
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states are vl and vr, from which both the angular speed θ̇ and the translation

speed v can be estimated as

θ̇ =
vr − vl
b

(4.2)

v =
vr + vl

2
, (4.3)

where b is the base width of the robot. Thus, the corrections are imple-

mented as

xci = xpi cos(diθ̇)− ypi sin(diθ̇) (4.4)

yci = xpi sin(diθ̇) + ypi cos(diθ̇) + div, (4.5)

where di is the delay which should be imposed on measurement xpi in order

to obtain the corrected measurement xci .

Correcting the measurements can be turned on and off from a config-

urable parameter.

4.5.5 Unknown Map Triangles

An artifact of the SLAM implementation needs mentioning. When mapping

only with a single pass of the environment, triangles or rhombi (four-sided

shapes) of unknown cells occur as a trace of the robot’s path. They occur

in situations where some of the front-faced beams of the LIDAR experience

maximum range. They can look confusing, but have a natural explanation.

To understand where the shapes arise, consider the fact that the maps

are only updated after a movement of a configurable rotation or translation,

for example configured to 0.4 radians or 0.4 meters. When moving along a

corridor, the maps are then updated every 0.4 meters.

At the same time, the LIDAR beams facing forward experience maxi-

mum reading because they cannot reach the end of the corridor. This means

each update of the map has a triangle of unknown area between the farthest

measurement on each side of the corridor, and the LIDAR unit itself. See

Figure 4.2.
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(a) Robot and LIDAR beams in corridor scenario.

(b) Resulting map.

Figure 4.2: 4.2a shows the underlying problem: A number of front-facing LIDAR
beams (red) return maximum readings (dotted). The resulting map has triangles
or rhombic shapes, as seen in 4.2b.
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4.6 Map Representations

After implementing Hector SLAM, a decision was made to reuse the code for

grid map representations throughout the rest of the program. As previously

mentioned, the map representation code was highly modular, and contains

elements general enough to allow for different cell representations. Indeed,

a the path planning algorithms use a binary map representation, discussed

in Subsection 4.8.1.

As an example of the modularity, the image pyramid-like approach Hec-

tor SLAM has is in fact “hidden” in an object MapRepMultiMap, which

satisifies the MapRepresentation interface. A representation using only one

such map layer is also implemented, MapRepSingleMap, which also satisifies

the same interface. The rest of the algorithm is agnostic to which of them

is used, and to what the underlying cell representation is.

It is important to note that this MapRepresentation interface is agnostic

to the scan matching approach used. The only asumption made is that some

scan matching algorithm is available, returning an estimated pose based on

some start estimate and some range scan.

For this reason, the author can see no reason why for instance the map

representation and scan matching of TinySLAM couldn’t be implemented

within this map representation paradigm. Much of the TinySLAM algo-

rithm could have been implemented simply as a MapRepresentation ob-

ject, encompassing both the underlying likelihood field representation and

the scan matching procedure.

4.7 Map Storage

In order to save maps and load previously obtained maps, a package mapstorage

was implemented. The package has a corresponding assets folder where all

maps are stored, and is responsible both for storing maps in a suitable way,

and for reconstructing them from a file identifier.

In order to safely encode and decode maps, the encoding/gob package

of Go was used. The package helps with encoding arbitrary Go structures

to binary code [2], which can be transmitted or stored, before they can be
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decoded. The package can be compared with Python’s pickle [24] module,

for readers familiar with Python.

In order to safely use gob encoding for arbitrary maps, map represen-

tations have the possibility to implement the GobEncoder and GobDecoder

interfaces by specifying their own GobEncode([]byte)error and GobDecode

()([]byte, error) methods. The map storage package was implemented

so that these methods are honored.

A file type was specified for the maps, where the map data is encoded

to binary and stored together with

� a MapMetaData object containing

– Map name

– Map description

– Map dimension properties (for quick access)

– Map type, and

� a map thumbnail image of 256× 256 pixels in PNG format.

The MapMetaData object is gob encoded. The PNG thumbnail makes it

possible to get a glimpse of the map without decoding and loading the full

map data.

As the maps can be of considerable size, the three entities are com-

pressed together in a zip archive. This reduces the disc size of stored maps

dramatically: a map of 4096×4096 cells can take up 110 MB uncompressed,

but the finished file might be no larger than 1.2 MB.

The mapstorage package provides functions Save(), Load(), Rename(),

Copy() and Delete(), LoadMapMetaData() and LoadMapThumbnail() for

use by the rest of the program, in addition to a function returning a list of

available maps.

4.8 Path Planning

Path planning is crucial for autonomous navigation. Given start and end

points in a map, the system should be able to plan a suitable path, which

� is near optimal in the sense that it chooses a path reasonably close to

the shortest available path between the points,
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� avoids known obstacles and walls,

� sticks to areas known to be free, avoiding unknown areas when possible,

� circumnavigates obstacles at a set distance, holding some minimum

distance to walls.

Additionally, the path planning algorithm should run on-line, so it should

be able to plan paths quickly.

4.8.1 Binary Maps

The path planning algorithm was to use maps from the SLAM algorithm,

that is, grid maps with resolutions down to 2.5 centimeters or less. This is a

level of accuracy not needed for path planning, which was assumed to have

more benefit of speed than of excessive accuracy.

Therefore, a binary grid map package binarymap was created, where,

as the name suggests, cells are either free or occupied. The binary maps

implement the same OccGridMap interface as the SLAM output maps.

A function was written in order to create these binary maps directly

from any occupancy grid map, supporting an argument for scaling the maps

down by some factor, so that down-sized maps could be created easily. The

function defines a cell in the down-sized binary map as occupied if any of

the cells in the original map are occupied.

Additionally, the down-scaling function considers a parameter checkRadius

, which is the additional distance from any obstacle in the original map

which should be considered occupied. This is done in order to help search

algorithms avoid obstacles at some distance.

The result is a map taking less space in memory, which is easier to handle

and easier to use for a variety of search algorithms. A package pathplanning

was implemented, featuring an PathPlanner interface which arbitrary path

planning algorithms can implement. All such algorithms must return a Path

object as specified in the sub-package path. Such a path consists of line

segments represented by their start and end coordinates.
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4.8.2 A* Path Planning

Path planning using the A* search algorithm is perhaps the most straight

forward approach. The well-known algorithm is easy to implement and

maintain. A* was implemented as a package astar.

Each cell of the binary map is considered a state, with consideration

of the robot’s orientation. In other words, the implementation has a 2-D

vehicle state representation. This was assumed not to be a problem, since

the robot can turn on a dime, that is, rotate around it’s approximate center.

The algorithm searches the binary map for a path to the goal location.

The heuristic is the Euclidian distance to the goal location, multiplied by

some configurable factor if the corresponding cell of the original map is

unknown, in order to punish paths through such locations. This heuristic

is admissible, thus guaranteeing optimal paths with respect the binary map

and tuning parameters.

One of the drawbacks of the plain A* algorithm is its discrete paths,

leading to zig-zag patterns instead of diagonal lines, that is, it artificially

constrains the path to move in only four directions (eight could easily have

been implemented). An example can be seen in Figure 4.3a.

4.8.3 Hybrid A* Path Planning

Attention was given to find the fastest path planning algorithm possible,

which would allow for more frequent re-planning. An article about Junior,

the Stanford entry in the 2007 DARPA Urban Challenge presents an ap-

proach to high speed path planning which they call Hybrid A* [42]. Junior

is an autonomous car, based on a Volkswagen Passat.

The algorithm is given its name because it plans a continuous, smooth

path in a discrete grid map. The vehicle state is represented by 4-D dis-

crete grid, where the robot pose is three of the dimensions, with a forth

representing the direction of motion: forward or reverse.

The hybrid A* algorithm implemented for Junior features two heuris-

tics, both admissible. The first one considers the non-holonomic constraints

of the car, and can be completely precomputed for the entire 4-D space,

helping by approaching the goal with the correct heading. The second is
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calculated online by dynamic programming, indicating the shortest path

given obstacles.

The algorithm’s nodes are still the cells of the grid map. However,

the transitions from one cell to another are computed by control signals

and their predicted effect on the vehicles state through some mathematical

model. Though the nodes are discrete, they are associated with continuous

states. The effect is that a control signal for the path can be guaranteed to

exist.

A package hybridastar was implemented, performing an approxima-

tion of the algorithm described above. The non-holonomic heuristic was

discarded, under the assumption that it would have a lesser impact for the

application of this thesis – as previously mentioned, the robot is approx-

imately differential wheeled and can turn on a dime, whereas Junior has

Ackermann steering like a regular car. Also, instead of using dynamical

programming, the Euclidian distance was used as the heuristic.

Four motions were used as transitions: directly forward, forward left

turn, forward right turn and directly backward. An underlying problem is

that the algorithm with Euclidian distance heuristic does respect in-place

turning, that is, turning without moving forward or backward, as these

actions do not impose a change in the heuristic.

The result was a working path planning algorithm which produced smooth

curves, but which was suboptimal in the sense that it did not honor the ma-

neuvers which the approximate differential wheeled robot was capable of.

4.8.4 Path Smoothing

Whereas Hybrid A* paths are smooth, A* paths can contain zig-zag pat-

terns, leading to inefficient motions of the robot, with frequent turns. Other

frequently used path planning algorithms like Field D* also posses this flaw

[42, 21], although to a lesser extent.

A path smoothing method was therefore implemented in the path pack-

age. The used is presented in Unit 5 of the course Artificial Intelligence

for Robotics at Udacity.org, and is a gradient descent optimization which

smoothen paths through a weighting of two goals: staying close to the orig-

Udacity.org
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(a) Non-smoothened path (b) Smoothened path

Figure 4.3: Non-smoothened and smoothened paths planned in auditorium EL5
at NTNU. Both paths are planned by the A* algorithm implemented as described
above. The figures are screen shots from the web interface, described in Section
4.11.

inal path and minimizing the length of the path.

The algorithm starts off by assigning a new path, which is a copy of the

path to be smoothened, Y = X. The paths are defined by locations xi and

yi of nodes in some coordinate system.

The two optimization criteria are defined as

||xi − yi|| → 0, (4.6)

minimizing the distance from the new point y to the original point x, and

||yi − yi+1|| → 0, (4.7)

minimizing the distance of consecutive points of the new path.

The algorithm is implemented as the two equations

yk+1
i = yki + α(xi − yki ) (4.8)

yk+1
i = yki + β(yki+1 + yki−1 − 2yki ), (4.9)

where α and β represent weights for smoothing and for remaining true to the

original path, respectively. The update equations are executed iteratively

for all path nodes except the first and the last, until the path converges.
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An example of the application of the smoothing procedure can be seen

in Figure 4.3.

4.8.5 Result

The implementation ended up with two different alternatives to path plan-

ning. The Hybrid A* algorithm produces smooth paths, while the A* algo-

rithm produces paths which need to be smoothened. More path planning

algorithms can easily be added at a later point, perhaps taking advantage

of both the binary maps and the path smoothing.

Although the path smoothing can theoretically cut corners around so

that the resulting path is invalid, the effect did not turn out to be a problem

in initial tests.

4.9 Path Following

Path following was implemented in order to control the robot along the

paths planned by the modules discussed in Section 4.8. The problem was

to, given a pose estimate from the SLAM algorithm, find control signals for

the motors in order to follow a given path.

A package pathfollowing was created, containing a PathFollower in-

terface which any such algorithm can implement, only demanding the meth-

ods SetPath() and SpeedUpdate(), where the latter returns control signals

given some position estimate. This allows other path following strategies

than the following to be implemented.

A method for solving this problem was obtained from [23], where the

application is path following for marine craft. The algorithm is referred to

as line of sight with lookahead-based steering.

The algorithm considers line segments one by one, starting with the first.

It recognizes when the robot has passed this segment, and continues with

the next until the whole path is completed.

While a more comprehensive derivation can be found in [23], this text

seeks to provide an intuitive explanation.

A transformation matrix to a line segment fixed reference frameRp(αk) ∈
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SO(2) is constructed by the angle angle αk between the line segment and

the x axis. From this, the coordinates ε(t) = Rp(αk)
>(pn(t) − pnk) of the

robot in line segment fixed reference frame is computed.

The coordinates ε now consist of

ε =

[
s(t)

e(t)

]
, (4.10)

where

s(t) = along-track distance

and

e(t) = cross-track error.

The objective of path following is thus simplified into the problem of

controlling e(t) → 0. This is done by computing some desired heading

direction χd(e) based on the cross-track error. The desired heading consists

of two parts

χd(e) = χp + χr(e), (4.11)

where χp is identical to the angle used for computing the transformation

matrix Rp(αk). The angle χr(e) is computed as

χr(e) = arctan
(
−e
∆

)
, (4.12)

where ∆ is some configurable lookahead distance along the line segment,

ahead of the projection of the current location into the line segment.

Whenever the along-track distance s(t) of the current position estimate

for a line segment is found to be larger than the length of the line segment,

the line segment is swapped with the next.

With the algorithm’s output being a desired heading direction χd, an

additional derivation had to be done to find appropriate control signals. The

derivation considers the following equation, suitable for differential wheeled

robots:

θ̇ =
vr − vl
b

, (4.13)

where vr and vl are speeds of each wheel, and b is the base width of the
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robot. We want a P -controller for the heading,

θ̇ = p′(χd − θ(t)). (4.14)

Combining equations 4.13 and 4.14 yields

vr − vl = p(χd − θ(t)), (4.15)

where p = p′ · b is the controller’s P parameter. The control signals are thus

given as

ur = uc +
vr − vl

2
(4.16)

ul = uc −
vr − vl

2
, (4.17)

where uc is a constant ensuring the robot maintains a forward velocity –

setting uc = 0 makes the robot only turn in place.

4.10 Configuration

The total software system features many run-time constants which could

change over time and which are subject to tuning. Some are dependent

on the environment of the computer. Examples are the location of direc-

tories, the COM ports on which sensors and motors are found and tuning

parameters for SLAM algorithms.

Allowing such parameters to be configured without needing to rebuild

the program executable would make the program more flexible.

Instead of writing such a module from scratch, an open source package

was used. Goconf, available from code.google.com/p/goconf reads and

writes to easily human-readable text files. It abstracts the process of reading

a configuration parameter to one function call.

A very simple package config was written in order to provide the con-

figuration values to the rest of the system. The package defines one variable

for each of the configuration parameters, and populates them when the pro-

gram is started. The parameters are available at runtime for the rest of the

code.google.com/p/goconf
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program simply by importing the package and referring to the appropriate

variable, for example config.EXAMPLE_VARIABLE.

4.11 Web Interface

The problem description specifies that some interface should be available via

a wireless connection. The interface should offer services including manual

control of the robot, inspection of map data and estimates of the robot’s

current position, in addition to automatic control and guidance.

While the interface could have been built as a client side native ap-

plication with a graphical user interface, a decision was quickly made to

implement it as a JavaScript driven web interface. Success with this way

of providing an interface had previously been shown by the NTNU Eurobot

team [50].

The advantages of using web pages for control are numerous. Web pages

with JavaScript are platform independent, and can be accessed from smart-

phones, tablet computers, laptops, desktops and even game consoles. They

require no installation on the client side.

Many functions of the web pages should be updated without refreshing

the page on the client side, thus sparking the need of a server side API

for obtaining new data. The side effect is an opportunity of letting other

applications access the same interface, opening for creating new applications

strictly client side, enabling more use cases of the software in the future.

4.11.1 Server Side

A package web was created based on the net/http package included in Go.

The package was inspired by code from the NTNU-Eurobot project. A

structure WebServer was used to allow communication with the rest of the

program, and functions both for serving static files such as CSS or JavaScript

and for serving dynamic pages where some of the content is dependent on

data from the rest of the program was written. The dynamic pages were

implemented using the html/template package of Go.

Additionally, a framework for API functions was set up. It was con-
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structed so that its functions could access the central Controller of the

program, with modules such as motor control, SLAM control and sensor

control. The functions are free to return different status codes and arbi-

trary data when relevant, such as images. However, most API functions

would return data serialized with the JSON format, easily readable both

for human inspection and for many different programming languages.

Documentation of the implemented API calls can be found in Appendix

B.

4.11.2 Client side

The client side file templates and static files are stored in the assets/web

folder.

The interface was implemented based on the Twitter Bootstrap frame-

work available at twitter.github.io/bootstrap, in addition to the jQuery

JavaScript library.

Twitter Bootstrap was built by Twitter, the social networking service.

It provides simple solutions to many common problems in web develop-

ment, such as fluid layouts which adapt to different screen resolutions. This

made making the interface work nicely with both desktop computers and

smartphones.

jQuery is currently the most popular JavaScript library [64]. Among its

chief advantages is a simple CSS selector based way of addressing elements,

its simple AJAX API for asynchronously fetching data from servers and a

framework for building jQuery plugins, which can help code encapsulation.

Log Streaming

The interface of the NTNU Eurobot team includes log view, displaying

output from the program’s internal logs. Log messages can be useful for

debugging and for documentation of events during execution.

While the Eurobot team let the client side continuously poll the server

for changes of the log, an improvement was made in order to reduce the la-

tency of log updates and the number of requests to the server. The jQuery

twitter.github.io/bootstrap
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plugin jquery.websocket-0.0.1.js was used in order to create a stream-

ing log service based on web socket technologies. The server’s log messages

could thus be displayed in near real time, transferred through a single, open

connection between the server and the client.

At the server side, the solution for maintaining such a connection was

implemented through the use of the go.net/websocket package available

from code.google.com/p/go.net/websocket.

SLAM Interface

One of the major components of the client side is the SLAM graphical user

interface, pictured in Figure 4.4.

In order to display interactive maps generated by the system, draw-

ing traces of the robot’s position and the paths planned, the Google Maps

JavaScript API [25] was used. The API has a wealth of functionality, and

includes functions for drawing polygons and lines.

Some work had to be done in order to make the Google Maps API work

with Euclidian maps like the output of the SLAM algorithms – the standard

maps work with a Mercator projection suitable for maps of spherical objects

like planets. A map projection for planar maps was implemented in order

to support the planar maps of the SLAM algorithm.

Adjustments were also made in order to support dynamical updates

of the map, where the current map is replaced with one loaded from the

server. This is done by giving each tile it’s own ID, allowing the image

source address of the element to be replaced. The new ImageMapType has

a method update() which automatically updates all tiles presently in the

map. The code for the map adjustments are found in the file googlemaps.

slammap.js.

Maps displayed in the client side interface are transferred from the server

as tiles, all measuring 256 × 256 pixels encoded in PNG format. Tiles are

associated with a specific zoom level. More details are explained in [25].

The Google Maps API’s line and polygon drawing functions was used

for drawing robot position, position trace and planned paths.

All other SLAM interface client side code is found in jquery.slamstats

code.google.com/p/go.net/websocket
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Figure 4.4: SLAM graphical user interface as seen on a desktop computer. The
Google Maps JavaScript API is used for displaying a map, overlaying the robot’s
current position (semi-transparent blue), a trace of the robot’s positions (red line),
providing a tool for measuring real world distances in the map in addition to
visualizing planned paths (not pictured). A console log is also included in the
interface.
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Figure 4.5: Map manager GUI. The view is used to display and edit map meta
data, as well as loading them into the SLAM algorithm.

.js. As the name suggests, the code was written as a jQuery plugin, fol-

lowing a pattern in order to provide options for configuration and to let

other code control the plugin. This plugin can start and stop the SLAM

algorithm. It also provides means of requesting path planning and follow-

ing of planned paths, controls what should be displayed in the map, while

also continuously polling the server for changes. The plugin is responsible

for automatically triggering map updates when the robot has moved a con-

figurable distance, and for updating the robot’s current position, updating

planned paths and traces of past positions.

Map Storage Manager

An interface for inspecting and editing meta data of stored maps was cre-

ated. The interface is also used to load such maps into the SLAM algorithm.

A screen shot can be seen in Figure 4.5.

The interface loads thumbnail images and meta data of the maps from

the API.

Sensor Control

A sensor control view was implemented, displaying the statuses of the LI-

DAR and odometry sensors available. The interface can be used to start
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Figure 4.6: Sensor GUI listing the statuses of available sensors and sensor logs.

and stop the sensors, and also provides a list of the saved sensor logs.

The listed sensor logs can be renamed, deleted or downloaded. Each

sensor log also has a button for initiating real time playback.

Manual Control

The web interface features a page for manual control. A jQuery plug-in

named joystick-js provides a virtual joystick. Values are read from the

joystick at regular intervals and sent to the API. The interface monitors

the status codes sent back from the API and warns the user if errors have

occurred. A screen shot from the graphical user interface can be seen in

Figure 4.7.

4.12 Summary

A overall sketch of the program is sketched in Figure 4.8. The sketch is not

accurate in details, but gives an overlook of the architecture. The controller

with subcontrollers act as the backbone of the program, with subfunctions.

The web interface sends commands to the controller, and can obtain data

from controller and subcontrollers.
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Figure 4.7: Manual control interface as seen from a smartphone. Currently
steering forward and to the right.

Figure 4.8: Software architecture sketch.
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All sensor data is published as messages over channels. The log reader

is also capable of publishing sensor data.



Chapter 5

Results

In order to demonstrate the software described in Chapter 4 in combination

with the robot described in Chapter 1 and the sensors from Chapter 3, a

series of experiments were planned and conducted.

This chapter describes the experiments and their motivations, before

presenting their outcomes. A short discussion of the results follow imme-

diately after each result, while an overall discussion is found in Chapter

6.

When controlling the robot on-line, the robot’s on-board computer was

wirelessly connected to the building’s wireless network, which has several

access points. The web interface was available over the Internet. The robot

was followed by an operator with a laptop computer.

5.1 On-Line Mapping

While the software is able to perform SLAM in several fashions, with manual

control, automatic path planning and re-planning, off-line and on-line, one

of the most useful basic skills it can show is it’s ability to passively on-line

create a map of the environment in which it is maneuvered.

An application could be assistance for manual control when navigating to

some location. The robot could be controlled by the web interface described

in Chapter 4, or it could be controlled by some other interface. The operator

could be walking behind the robot, or control the robot from some remote

75
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(a) Map obtained by robot, single pass. (b) Floor plan.

Figure 5.1: 5.1a shows a map obtained by the robot, on-line in real time. The
map was obtained on-line during a single passing of the environment. The robot
was controlled manually, via the web interface, during the experiment. 5.1b shows
a floor plan of the same area, courtesy of NTNU (ntnu.no/kart.)

location via the Internet.

The experiment described below was designed to explicitly show the ful-

fillment of point 3c of the thesis’ problem description, as well as demonstrate

the abilities described above.

5.1.1 Execution

The robot was started from a repeatable location, accurate to within a few

centimeters. The start position will become the map’s origin in both x, y

and θ coordinates. The location corresponds to the lower left corner of the

map in Figure 5.1a, in room G242A of the floor plan 5.1b.

The LIDAR and odometry sensors were connected and started, initiating

sensor logging. Then, the SLAM algorithm was started, running on-line in

ntnu.no/kart
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real time, before manual control was initiated. The robot was navigated to

room G211 in the upper right corner of the map.

At one point during navigation, the operator lost control over the robot,

as the program lost communication with the motor controller card. While

the program sent correct control messages, the motors continued at a con-

stant speed. The operator had to disconnect the motor card and re-plug it

in order to regain control. After this incident, the experiment carried on

without further disturbances.

5.1.2 Discussion

The experiment replicates a real-world scenario where the robot is controlled

manually, while simultaneously creating and displaying a map along with

its estimated current position.

While some inaccuracies occur, the map is found to be mostly accurate.

When comparing the obtained map to the floor plans of the building, all

distinctive features such as door openings and hallways are mapped. Their

relations are accurate enough for comparison with floor plan.

The corridors of the map are slightly bent. The building is old and

could have some constructional inaccuracies, but blaming the bending on

the construction seems far-fetched. When drawing a line from one end of

the longest corridor to the other, the distance from the wall to the midpoint

of this line is 0.55 meters.

The scheme for correcting LIDAR scans from effects of delay between

individual beams was investigated for errors. However, disabling this cor-

rection did not seem to have much effect.

A more likely explanation could be found considering the end-point den-

sities. The small triangles of unknown spaces discussed in Subsection 4.5.5

indicate the robot’s path when acquiring the map. A trend can be noticed

that the corridors seems to bend towards the side of the corridor on which

the robot was driving.

Considering the geometry of the LIDAR beams, the density of the end-

points will fall more closely on the closest side of the corridor than on the

farthest side. This could lead one to suspect the scan matching procedure
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Figure 5.2: Representation of railing in the map, and a photograph of the scene.

could have a tendency to lean towards this closest side.

Also featured in the map is a hall in the corridor, with a staircase and

railing. A magnified view of the area of the map is figured in Figure 5.2 along

with a picture of the railing. Notice that the the railing is not accurately

mapped. Five posts are mapped, but the photograph shows the correct

number of railing posts is six. This shows such thin obstacles may not

be accurately mapped, and might not be usable for the scan matching.

However, in automatic drive modes, the robot will not crash into them, as

they are recognized by the collision avoidance module.

Although the map has these flaws, the overall map quality is satisfiable.

The map is consistent and features are placed in recognizable locations.

Their spatial relationships seem consistent. See also the experiment com-

paring distances in the map to physical measurements, in Section 5.5.

5.2 Odometry Only

Assessing the accuracy of the odometric measurements could be important

for verification of the implementation and gaining insight in the process for

further development. If the odometry was near perfect, the SLAM process

would be trivial, only a matter of writing LIDAR data to a map at positions
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Figure 5.3: Path of the first floor of the Gamle Elektro building at NTNU ob-
tained from odometry alone. The actual path closely resembles a rectangle, where
the navigation was continued for some time after loop closure.

given from odometry.

An experiment was set up so that odometry data alone could be used

for computing an approximation of the path traversed by the robot. A

MATLAB script was written, reading from sensor log files and recreating

the path through the same mathematical model of the robot used by the

SLAM process. Note that no Kalman filtering was performed on this data.

A sensor log was obtained from a traversal of a large loop in the first

floor of the Gamle Elektro building at NTNU. The loop is approximately

125 meters. In addition to this length, the robot was navigated a further

distance in the same loop for comparison.

A plot of the computed path using odometry alone can be seen in Figure

5.3. The environment is the same as figured in Figure 5.12, where a floor

plan can be seen.

The parameters of the model used for making this plot were set to the

ones obtained from physically measuring with a tape measure. The base

width of the robot was set to 0.389 meters, while the radius of the encoder
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wheels were set to 0.0505 meters.

5.2.1 Discussion

The experimental results should verify that the conversion from the raw

encoder measurement’s pulses since last reading is accurately converted to

odometric measurements, as well as give an idea of the accuracy achieved.

The results show that the odometric readings are correctly implemented,

as the distances of the straight line segments approximately coincide with

physical measurements of the area, and with maps produced by the SLAM

algorithm of the same area. This is the same area as the “large loop” in

Section 5.6.

The angles of the turns are somewhat off. Note however that the errors

of the different turns do not seem to be much correlated. The angles of

turns 1, 3 and 5 are too acute, while angles 2 and 4 are too obtuse when

numbering the turns in order of appearance from the robot’s start point in

(0, 0). This suggests tuning in order to make one turn more straight could

further hurt others.

Sources of error in the odometry, especially regarding turns, include

errors in the mathematical model. The mathematical model used is that of

an differential wheeled robot. Weight distribution and motor tuning of the

robot is not perfect, so the robot might turn around an axis slightly offset

from the geographical center of the drive wheels. However, if this was the

source of the error, one could assume the errors would be more consistently

leaning towards either acute or obtuse.

Another source of error is discretization errors. In the worst case, when

driving slowly, the encoder on one side might experience zero pulses, while

the opposite encoder might experience one pulse. In truth, the first encoder

might have turned just too little to generate one pulse, while the other might

have might have turned just enough. The resulting error in rotation can be

calculated as

εθ =
2π · rw
ρb

≈ 1.019× 10−3 = 0.058◦, (5.1)

where rw is wheel radius, ρ is encoder pulses per revolution and b is the

base with of the robot.
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While Equation 5.1 shows the error per time step is small, making a

turn a turn can consist of over 100 such time steps, of approximately 100

milliseconds. Even so, it is not easy to rationalize that the discretization

errors should account for all the error.

With good performance on straights, the odometry should be able pro-

vide some useful data for SLAM algorithms, for instance in situations with

plain corridor walls or open spaces. The initial assumption that odometry

alone could not have been used for SLAM purposes is however validated –

a map purely made from these measurements would have been very inaccu-

rate.

5.3 With versus Without Odometry

As discussed in Subsection 2.2.2, the importance of odometric measurements

is open for question. Future work could benefit from knowledge about how

the odometry influence the SLAM algorithm.

Working towards simpler software and simple hardware could be of in-

terest for the project. Assessing the importance of odometry could help

ensuring future work is spent in the most beneficial areas.

Three different scenarios were considered for assessing the importance

of odometry. The two first are well defined situations, where the LIDAR

has a view of landmarks throughout the log. For all experiments, the same

sensor logs were used with and without odometry, so the LIDAR data is

identical.

5.3.1 Without loop

The first experiment was based on a sensor log from the second floor of the

Gamle Elektro building at NTNU. The traversed route does not contain any

loops, and the environment is well defined. The route is the same as in the

experiment of on-line mapping in Section 5.1.

Table 5.1 shows the resulting end positions relative to the map’s origin

for the first log. Figure 5.4 shows the corresponding computed maps.
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x [m] y [m] θ [◦]

With odometry 17.44 38.83 -179.56
Without odometry 17.64 38.74 -179.99

Table 5.1: End positions with and without odometry using the sensor log captured
for Section 5.1.

(a) With odometry (b) Without odometry

Figure 5.4: The resulting maps from off-line SLAM with and without odometry
in the second floor of the Gamle Elektro building. The LIDAR data for the two
maps is identical.
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(a) With odometry (b) Without odometry

Figure 5.5: The resulting maps from off-line SLAM with and without odometry
in a loop of the first floor of the Gamle Elektro building. The LIDAR data for the
two maps is identical.

5.3.2 Loop

The second experiment was based on a sensor log from the first floor of the

Gamle Elektro building. The environment contains a loop, which can be

used to assess the quality of the map.

Figure 5.5 shows the result of the second log, computed with and without

taking odometry into account.

5.3.3 Poorly Defined Areas

The SLAM process was assumed to perform poorly in certain environments,

specificity places where motion is hard to deduce from LIDAR measurements

alone. Examples are open spaces and corridors with plain walls. For the

former, the LIDAR’s limited range could cause it not to detect distant

objects. For the latter, the lack of landmarks in the direction of travel

could introduce uncertainty in the same direction.

In order to assess the performance in such environments, and to provide

illustration of the problem, a test was performed in the Glassg̊arden area

of NTNU’s Elektro building. The area is large and landmarks are sparse.
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Figure 5.6: The Glassg̊arden area at NTNU.

At the ground plane, where the robot was navigated, the space resembles a

wide corridor, of approximately 6 meters’ width.

The robot was navigated in both length directions, forming a loop, in

both directions near the robot’s left wall. The start and end positions are

in the lower left corner of 5.6.

Figure 5.7 shows the computed map both when odometry was used and

when it was not used.

Figure 5.8 shows the calculated map together with the calculated path of

the robot. Note that the robot started and stopped in the same area, while

the map shows a distance of around 11 meters between the two points.

The calculated travel distance while staying close to the upper wall was

approximately 12 meters, and approximately 25 meters on the return trip.

The real length of the path is approximately 25 meters.

As an experiment with the implementation, the code was modified in or-

der to weight the odometry more while still using the same general approach.

More specifically, the modified code considers scan matching estimates as

measurements, while updating the map directly from the EKF. More moti-

vation and discussion for this approach is presented in the discussion below.

Figure 5.9 shows the result with the modified code.
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(a) With odometry

(b) Without odometry

Figure 5.7: The resulting maps shown computed with and without odometry.
The LIDAR data is identical for the two maps.

Figure 5.8: Screen shot which embeds the computed path of the robot. Note that
the distances along the upper and the lower walls is equal in real life, forming a
loop, while in the map, the upper distance is estimated to be much shorter. The
map shown is the same as Figure 5.7b (without odometry), at a different resolution.
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Figure 5.9: Map generated with alternative approach to mapping, which favours
odometry more than before.

5.3.4 Discussion

The first two situations are well defined for the LIDAR, and the maps

are successfully and accurately updated, even without odometry. In these

situations, the maps with and without odometry are very similar, and only

by carefully comparing can differences be found. Thus, the tests are not

conclusive as to whether odometry helps the SLAM process. However, the

test also shows that SLAM performance is not hurt by odometry.

The most central part of the implementation for this experiment is de-

scribed in Section 4.5.3. One could argue that the integration of odometry

in the SLAM process is not optimal, and is in effect giving an unreasonable

large weight to pose estimates from the scan matching process. However,

the test with the large loop shows that the map is of high quality and the

loop is almost closed. A better integration of the odometric measurements

would therefore not give large differences.

This illustrates the statements given in Section 2.2, that for well defined

situations, LIDAR scan matching is more accurate than odometry and dead

reckoning. To put it another way, when comparing to the experiment with

only odometry, described in Section 5.2, it is clear that scan matching con-

tributes much more for a correct map than odometry does.

In the last situation, where the environment is poorly defined for LIDAR

scan matching, one could expect a more accurate map given the odometry.

Close inspection of the resulting maps with and without odometry indeed
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shows that odometry does help, but only slightly. This can be seen by a

double wall in the lower right corner in the map without odometry, which

is more visible at the lower resolution in Figure 5.8.

In effect, while driving close to the upper wall, the environment was trun-

cated by over 50 per cent for experiments both with and without odometry.

While driving close to the lower wall, the calculated distance was correct

or near correct. This side of the environment has more features, including

plants and light posts, as seen in Figure 5.6.

Again, the impact of the odometry with the regular implementation is

only slight, and the argument that the integration of odometry could have

been done more accurately holds.

The above results motivated a study of the implementation, and an

alternative approach to the mapping was conceived. As shown by the ex-

periments, in poorly defined areas, odometry and dead reckoning can give

more accurate results than scan matching. The original implementation al-

ways uses the result from scan matching for the mapping phase, and uses

the EKF as a hint. The alternative places more weight on the EKF, and

uses the EKF estimate for mapping, after updating it with an estimate from

the scan matching.

The alternative approach was implemented and is tagged in the software

Git repository as directEKF for documentation and later use.

Inspecting the map from the modified code, in Figure 5.9, the results

for this test are considerably better than with the original implementation.

While traversing along the upper wall, the wall is still truncated, but less

than with the standard implementation. The mapped length of the upper

wall, when following the same wall, is almost as long as on the return trip,

meaning it has been much less truncated. To fully appreciate this fact,

consider the starting point of the robot, shown in Figure 5.8. There is also

no double walls in this part of the map.

However, on the return trip, the computed path and map diverges, tak-

ing a lower path. The SLAM algorithm with the modified code is more

likely to do this. One way to look at it is that the mapping algorithm now

makes more of a “compromise” between odometry and scan matching for

the map updates.
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When testing the alternative approach on other sensor logs, similar re-

sults were found. The alternative approach is much less reliable for well

defined situations, corridors appear more bent in maps and the ability to

close loops is severely hurt. For this reason, further development and testing

of the alternative approach was abandoned.

5.4 Automatically Traversing a Stored Map

When the robot is operating repeatedly in the same environment, benefits

can be gained from using the same map each time. This is needed for

effectively planning paths to some goal location. Given a precise map to

start from, a map which is known to have only small errors, the accuracy of

the localization in that map is presumed to be higher than when mapping

unknown environments.

When using a stored map, the map is loaded from a file into the com-

puter’s memory as described in Chapter 4. During execution, the map is

always updated together together with the SLAM process, matching current

sensor scans with the map to obtain a position estimate. As a result, the

map is updated with observed obstacles or the fact that obstacles previously

in the map are now free areas. However, permanent features of the map

should not move, but perhaps be updated to a more precise representation,

such as smoothing of the walls.

The SLAM algorithm’s ability to navigate in previously obtained maps

is essential for several use cases. It allows the software to compute an

effective route to a target location and gives a remote operator a context of

the location in which the robot is estimated to be.

This experiment was designed to show the fulfillment of point 4b of the

thesis’ problem description.

5.4.1 Execution

The robot was placed at the approximate origin of the map obtained in

Section 5.1, accurate to within centimeters. The same map was loaded and

sensors were connected and started. The presented output is obtained from
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(a) Path planned from map origin. (b) Resulting path after return.

Figure 5.10: Figure 5.10a shows the path planned from the map’s origin to the
most remote point of the map before path following began. Figure 5.10b shows the
map after the robot successfully traversed the map to the most remote location
and back, using path planning and path following both ways. The figure on the
left is a screenshot and is thus depicted at a slightly lower resolution.

on-line SLAM.

A point in room G211 was selected, and path planning was initiated to

this point. The path was inspected and found to be rational, as seen in

Figure 5.10a. Path following was initiated, and the robot started traversing

the path.

The path following was accurate, and the robot did not deviate notice-

ably from the path. About 4 minutes later, the robot arrived at the goal

location and stopped.

Upon arriving at the goal location at G211, a new path was planned

back to the origin of the map. The robot followed the path back to the

origin, and produced the map seen in Figure 5.10b.

When near the origin on the way back, the robot was on one point
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driving at constant speed, deviating slightly from the planned path. The

operator unplugged and replugged the motor controller card, and the robot

subsequently corrected back to the planned path. The controller card had

crashed. This did not interrupt the SLAM algorithm, and when control was

regained, the path following continued without problems.

5.4.2 Discussion

On the path planned from the origin to the end point, showed in Figure

5.10a, the path seems largely reasonable. At the start, the path has a

straight corner, where the it could have been diagonal. A little later, the

path makes an S-formed shape with almost right angles, which can seem

unmotivated. However, close inspection of the map shows the path is avoid-

ing a mapped obstacle in the middle of the corridor. The obstacle is not

static, and might have originated from a person or object at that location

in the original map.

The route largely consists of straight angles, which is suitable for the

path planning implementation. However, close to the end point, the path

is diagonal, showing that this implementation with path smoothing is also

capable of planning diagonal lines.

The path avoids walls and other obstacles, avoids unknown areas and

does not cross walls. The path is considered satisfiable for the needs.

When updating the previously obtained map, the SLAM algorithm shows

good performance. Note that no inconsistencies appear, indicating that lo-

calization was accurate to the original map. It is difficult to assess the

absolute accuracy of the localization, but with no inconsistencies to the

original map, accuracy in areas where the LIDAR measures perpendicular

walls must be within the “width” of the walls, relative to the original map.

The walls are in most places 3 cells wide, equating to 7.5 centimeters. This

is within the accuracy of the LIDAR, having an error of ±3%.

Some outlier readings are written to the map, seen as small white lines

in the lower part of the map. These are incorrect measurements of the

LIDAR, which could have been filtered out.

Note that the algorithm is not able to correct the bending of the cor-
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Distance Map [m] Physical [m] Error [%]

A 39.5 39.3 0.5
B 29.6 29.5 0.3

Table 5.2: Distances measured in the map obtained in sections 5.1 and 5.4, com-
pared to physically measured distances. Error is calculated as ε = |dmap/dphysical|−
1.

ridors. Doing so would cause inconsistencies in the map. The large-scale

errors of a map will not be corrected by repeated traversals.

The traversal of the stored map was successful. The software accurately

localized the robot in the map. The planned path was followed within

accuracy enough not to hit walls or other objects.

5.5 Map vs. Physical Measurement

A simple measure of the accuracy of maps is to measure them against real

world data. While maps can have inaccurate curvatures, incorrectly non-

smooth walls or other imperfections, their size compared to the real world

is an intuitive measurement of quality.

In order to assess the accuracy of the maps obtained from the SLAM

algorithm and the sensor data in this manner, the map obtained in Section

5.1 and updated by the procedure in Section 5.4 was used.

This experiment does not have an explicit correspondence with any point

in the problem description, but is provided as an indicator of map quality.

The finished map was loaded into the program. Two distances which

were easy to identify were measured in the map using the web interface’s

built-in measuring tool, as described in Section 4.11.

Real world measurements were obtained by measuring the same dis-

tances using a 50 meter tape measure. Given some error in the points of

physical measurement contra the map measurements, and some slack in the

tape measure, the real world data is assumed to be accurate to within 0.1

meters.

Table 5.2 shows the real world measured distances compared to the

distances in the map.
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5.5.1 Discussion

As seen in Table 5.2, the distances measured in the map coincide very

closely with physically measured distances. The error of the measurement

with largest error represents an error of approximately 5 millimeters per

meter driven by the robot.

Considering the error of the LIDAR measurements are on the order of

±3%, and the fact that the LIDAR only covers a sector 5.6 meters in radius,

the result can be considered satisfactory.

The results are based on a map where the SLAM algorithm successfully

integrated scan matchings, with no catastrophic errors. In less fortunate

situations, the errors can be larger, as discussed in Section 5.3.3.

5.6 Closing of Loops

As discussed in Section 2.5, the process of closing any loop in an environment

can be a point of failure in any SLAM algorithm. If an environment contains

loops, closing them is crucial to the consistency of the map. A successful

loop closing can be seen as an indication of map consistency.

Several loop closing experiments were performed, in loops of several

sizes.

5.6.1 Execution

For the loop traversals, the robot was started from a point in the loop. Both

LIDAR and odometry sensors were connected and started, and the robot

was manually controlled. The SLAM process was performed off-line at a

later time.

Small loops

The first loops were done in a room of the B block of the Elektro building

at NTNU. An environment was set up in a room by placing tables on their

sides, such that they form a shape. The robot was navigated around these

tables and out on a neighboring corridor, forming two small loops. SLAM
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Figure 5.11: Loop in a room and out on a corridor in Elektro B block at NTNU.
The structure in the middle of the room is made of tables set on their sides. The
map contains two smaller loops.

was performed with a resolution of 1.25 cm per cell. The result is seen in

Figure 5.11. The approximate length of the loop is 20 meters, while the

room has measurements of approximately 10× 6 meters.

As can be seen from the map, there were glitches between the tables in

the center structure. The LIDAR detected some of the wall on the opposite

side of the structure while the robot was driving.

Both of the two loops were successfully closed. After loop closing, the

SLAM process continued without generating inconsistencies.

Large Loop

A larger loop was traversed in the first floor of the Gamle Elektro building

at NTNU. The loop forms an approximate rectangle, with three sides con-

sisting of corridors, while the last is open on one side to a large space with

columns.

Some sections of the loop are poorly defined for the SLAM process, as

they feature corridors with few landmarks. Therefore, three trash bins were

placed at these locations, increasing the chances of a consistent map.

The loop was not successfully closed. Close inspection of the map shows

a distance of approximately 11 cm at the point of loop closure. There is also

an angular difference of approximately 9◦. If the SLAM process was allowed
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Figure 5.12: Larger loop of the Gamle Elektro building at NTNU figured together
with a floor plan for reference. A the top of the map, the loop is open to a large
space, only enclosed by columns. The robot started in the top center of the map,
traversing the loop in clockwise direction. Upon return to the start point, the map
is not fully consistent.

Figure 5.13: If allowed to continue after an unsuccessful loop closure of the large,
the SLAM process diverged from the previously obtained parts of the map. This
figure shows a different, but comparable, execution from that of Figure 5.12.
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to continue, the map inconsistencies were increasing, as seen in Figure 5.13.

5.6.2 Discussion

The results of the loop experiments show two successfully closed loops, and

one instance where the SLAM algorithm was unable to close the loop with

enough precision to avoid map inconsistencies.

The precision needed for loop closure is hard to assess. It is dependent

on the scan matching scheme, the LIDAR and the configuration used.

Generally, a higher number of map layers used in the scan matching

algorithm causes gives a better likelihood of loop closure because the algo-

rithm is less likely to get stuck in local minima. However, a too high number

could cause erroneous matches elsewhere.

The LIDAR contributes by the number of backward-facing laser beams.

A lower number of such beams means the scan-matching is more likely to

“jump” over the error, matching instead with the meeting part of the loop.

However, if the LIDAR was configured to using less of the backward-facing

beams, map quality overall could be reduced. Also, if the scan matching

algorithm has to “jump” in this way, the map quality could be poor in this

area and subsequent traversals of this part of the map could face the same

problem. This approach to improving the chances of successful loop closure

was therefore not considered.

The final point for assessing the accuracy needed has to do with inner

workings of the scan matching. The method is iterative, theoretically im-

proving the match for each iteration. Intuitively, using more iterations could

be an alternative to improving the result. The current approach is to use

3 iterations in each of the smaller-resolution map layers, and 5 iterations

for the layer with highest resolution. However, increasing the number of

iterations did not seem to improve results.

While the hard limits for the tolerable error in loop closing in terms of

translation and rotation is difficult to assess, the experiment with the large

loop at least shows that 11 centimeters and 9◦ was not close enough with

the current algorithm and configuration.

For increased consistency and ability to close maps, two of the solu-
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tions which seem the most likely to work is multi-hypothesis mapping and

increased LIDAR range.

Multi-hypothesis mapping, as performed by Rao-Blackwellized algorithms

as discussed in Section 2.7 helps by maintaining a distribution of maps, es-

sentially permutated by updates from a probabilistic motion model of the

robot. By maintaining multiple maps, it is more likely that one of them is

accurate enough to successfully close the loop.

An increased LIDAR range helps by allowing a more accurate map to

be constructed to begin with. One of the applications of the original Hector

SLAM algorithm [37] is a hand-held device with an IMU and a LIDAR

with 60 meters range. In a corridor scenario, such range would help by

having a constant view of the end of the corridor, assuming the corridor is

no longer than 60 meters. Moreover, by measuring range to points on walls

further down the corridor, a more precise assessment of the curvature of the

corridor is facilitated, leading to fewer errors of rotation. The article using

this LIDAR shows there is no need for explicit loop closing.

Nonetheless, the SLAM algorithm was able to close the two smallest

loops with enough precision for it to continue creating a consistent map.

This demonstrates that the software in its current state is able to handle

such small loops of the environment.

The map of the large loop does not contain any significant or visible

inconsistencies up until the point of loop closure. It did also only miss by

11 centimeters, which must be considered a low amount given the size of

the 125 meter long loop, the 5.6 meter range of the LIDAR and its errors.

Although the loop was not successfully closed, the result suggests precision

of the map.

The experiments show the software’s ability to handle loops in the en-

vironment, and gives an intuitive evaluation of the maps’ accuracies. Small

loops can be successfully closed, but the current composition of hard- and

software is not able to reliably close all loops found in indoor environments.

With a single-hypothesis SLAM algorithm and the small range of the LI-

DAR used, the author regards the results as highly satisfactory.
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Map size Map levels Tot no. cells Average CPU [%] RAM [MB]

4096 4 22.2× 106 7 2790
4096 3 22.0× 106 6 2710
4096 2 20.9× 106 5 2460
4096 1 16.7× 106 2 1980
2048 4 5.57× 106 5 715
2048 3 5.50× 106 4 690
2048 2 5.24× 106 3 670
2048 1 4.19× 106 2 534

Table 5.3: The SLAM process’ computational power usages at different map
configurations. Map size is denoted in the number of cells in each direction, along
with the total number of cells across all map levels.

5.7 Computational Requirements

While the robot’s on-board computer in this case was a powerful PC, future

projects based on the same system may want to cut costs or weight by using

a less powerful computer. Therefore, a short documentation of the system’s

needs of computational power follows.

All tests in this were experiment performed on a desktop computer with

an Intel® Core�i5-2500 3.30 GHz CPU and 8 GB of RAM, similar to the

robot’s on-board computer.

While the CPU usage is roughly constant by the SLAM process, the

RAM usage is typically growing until Go’s garbage collection mechanisms

start. The RAM usage was noted after stabilization.

A summary of the noted computational resource consumptions for the

implemented SLAM is presented in Table 5.3. Map levels are image pyramid

like representations, each level of half the resolution of the next, as explained

in Subsection 2.8.2. Figure 5.14 shows the same data, plotted as RAM usage

versus the number of cells.

5.7.1 Discussion

In terms of CPU usage, the results reveal low needs of the SLAM algo-

rithm. In the worst case, the algorithm used less than 10 % of the available

computational power. This coincides well with the findings presented in the
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Figure 5.14: RAM usage in MB against the total number of cells across all map
levels. The raw data is presented in Table 5.3.

original article, which runs the algorithm on a relatively low cost Intel Atom

Z530 CPU.

The need for RAM memory is comparatively large. Most of the initial

tests were executed on a configuration of 4096× 4096 cells and 4 layers, the

most costly alternative of Table 5.3. Note that the almost 3 GB of RAM

is excluding memory consumed by operating system or other applications

running simultaneously. Future systems using this algorithm at these map

sizes should therefore have more than 4 GB of RAM, 8 GB is recommended

in order to avoid use of virtual memory on the hard drive.

Note that the total usage of RAM is nearly linear with the number of

cells used by the SLAM algorithm. This shows the amount of memory

used by the system can be approximated to 130 MB per 106 cells, when

calculating the SLAM algorithm’s needs for a new on-board computer or

proposing larger resolutions.

The current implementation of the log-odds maps for Hector SLAM, as

discussed in Section 4.5, uses float64 numbers. A case could be made that

the RAM usage could be reduced by using float32 numbers instead.

When considering the need for CPU power of potential on-board com-

puters, please also consider the needs of the path planning algorithm, as
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Figure 5.15: Goal locations A-G defined for the path planning experiment. The
start point of the paths is also figured.

discussed in Section 5.8.

5.8 Path Planning

As discussed in Chapter 4, planning paths in grid maps is not trivial, and

many path planning algorithms exist. The implemented A* algorithm is

optimal to its constraints and tuning, but needs documentation of how well

it performs, possible failure modes and time consumption.

An experiment was therefore set up, using a map of the Glassg̊arden area

at NTNU, with a corridor in a neighboring building. Seven goal locations

were defined, designed to illustrate performance and weaknesses. The map

and goal locations A-G can be seen in Figure 5.15. The path planning was

done with 0.4 meters of “check radius” (minimum obstacle distance thresh-

old), smoothing data weight of 0.5, smooth weight of 0.3 and a punishing

factor for unknown areas of 100.

The software was able to successfully find paths for all goal locations.

Even so, point E was problematic. Between point D and E, there is a narrow

passage, which the path planning algorithm was unable to pass through with

the configuration used, which had a minimum distance to obstacles of 40

centimeters. This configuration was found to be a comfortable distance

through initial testing. The opening is 0.80 meters wide.

Instead of failing when computing a path to point E, the path planning
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Goals A B C D E F G

Time [s] 19.5 18.7 18.7 17.7 21.0 19.7 18.9

Table 5.4: Time spent for computing paths to goals A-G.

algorithm found a much longer route, as illustrated in Figure 5.16. The

path goes through unknown environments.

For points F and G, the path planning algorithm found an alternative

route through an unmapped area. Paths planned for points D, E and G are

illustrated in Figure 5.16.

The time consumption of the path planning is summarized in Table 5.4.

Note that the time for path planning includes the creation of binary maps

and path smoothing, as discussed in Chapter 4.

5.8.1 Discussion

The path planning algorithm possesses some flaws. Even with path smooth-

ing, paths are sometimes jagged, which is suboptimal. However, further

smoothing of the paths might cause paths to converge in to unsafe dis-

tances to obstacles. When the robot is following such lines in practice, the

movement is slightly jerky, but does not pose a big problem.

The path planned to goal E represents a bigger problem. When the path

was made, the robot obviously passed through the passage between D and

E without problem, but the path planning algorithm is unable to plan such

a path.

It is important to note that lowering the minimum distance-to-obstacle

threshold of the algorithm would have allowed it to plan a path through

the passage. This was confirmed by setting the distance threshold to 0.30

meters. However, this might have resulted in the algorithm planning un-

safe distances elsewhere, particularly when turning around corners, as the

smoothing step will cut the corners slightly. A distance of 30 centimeters

gives the robot only 10 centimeter clearance on each side.

Another example output from the path planning algorithm can be seen

in Section 5.4. Here, the algorithm performs without annoyances.

Overall, the path planning algorithm seems to perform well. For clearly
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(a) Path to point D.

(b) Path to point E.

(c) Path to point G.

Figure 5.16: Paths planned to goal locations D, E and G.
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defined areas without very narrow passages, the algorithm has no problems.

Passage problems can occur at door openings with the current parameters.

When it comes to computational speed, the algorithm shows an almost

constant time consumption for paths to all the goals, which is somewhat

contra-intuitive given the differences in distance. Some of this effect can be

accounted for by the creation of binary maps, which takes constant time for

a given map size. The results suggest that the main body of work is done

in this step.

The path planning executes in around 20 seconds. For known maps, this

is not a big problem, as path planning happens only once. When planning

path through unknown areas, or when the goal location is in an unknown

area, paths might be planned which collide with unknown obstacles. When

the software through the collision avoidance module described in Section

4.4 detects such an obstacle, a the path will be re-planned based on the

updated map. If such obstacles are frequent, the execution time of the path

planning significantly slows down the automatic traversal. Note that this is

not a problem if the robot is controlled manually, as paths are not planned

in manual mode.

5.9 Automatic Exploration

Automatic exploration of unknown environments is supported by the soft-

ware. An experiment was conducted in order to demonstrate the software’s

abilities in this respect.

Automatic exploration is done by selecting a target in an unknown area.

The software plans a path to this location using the available information

of the map. Should the robot meet an obstacle in this path, a new path is

planned. The process continues until the robot arrives at the goal location

or no path can be found to this location.

5.9.1 Execution

The robot was started in a location of the second floor of the Gamle Elektro

building at NTNU. A goal location was selected at a location known to
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be outside reach, in order to allow the robot and software to explore the

environment in an attempt to reach the goal.

Screen shots from the interface during the automatic exploration can

be found in Figure 5.17. Note that Figure 5.17a is taken some time after

start-up. The sub-figures a-f are shown in chronological order.

5.9.2 Discussion

The experiment demonstrates how path planning and traversing with re-

planning can be used for automatic exploration.

The robot starts off with a map of only what is visible to the LIDAR in

that position. In attempts to reach the, in this case unreachable, goal des-

tination, paths are re-planned as they prove impossible to traverse because

of obstacles. The path traversing is stopped because the collision avoidance

module detects an obstacle in a sector in front of the robot, as explained in

Section 4.4.

It should be noted that the scheme could be done more efficiently. When

the robot stops, information that the path is blocked is often already avail-

able. If the path planning algorithm was faster, path planning could have

been done repeatedly, while the robot was driving. Because the path plan-

ning takes many seconds, the robot would have typically already moved

significantly from the start position of the planned path, if done while driv-

ing.

Nonetheless, the results show that the robot is capable of autonomously

exploring and mapping the environment, fulfilling point 4a of the problem

description.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.17: Automatic exploration, shown as a series of screen shots from the
web interface. Planned paths are shown in green, trace of robot path is shown in
red. A path to the same goal location is re-planned as paths show impossible to
traverse.



Chapter 6

Discussion

This chapter is devoted to a discussion of the results presented in Chapter

5, as well as a discussion of elements of the implementation.

6.1 Interface and Manual Control

The web interface was used for run-time interaction with the software during

development, initial testing and experiments. It was used from desktop and

laptop computers as well as from smartphones.

When controlling the robot manually while walking behind the robot, it

was often found convenient to control the robot from a smartphone rather

than a laptop computer. The smartphone’s touch screen made for a par-

ticularly efficient way of controlling the interface’s virtual joystick. This

illustrates the advantages of providing a multi-platform interface.

The interface was stable and easy to use. Being able to control the robot

from several platforms was an advantage. For example, at one occasion, the

laptop used for remote control was out of battery. Control could continue

from a smartphone, without problems. The only functions not available

from touch units is those which require right-clicking on the SLAM inter-

face’s map. This is an implementation issue.

Some short comings have to be discussed. Some of the interface re-

quirements, most notably the map view of the SLAM interface, requires an

Internet connection. The map view is based on an on-line API, which the
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robot software does not serve itself. Thus, if the robot runs on a network

not connected to the Internet, the map view will not work.

With the SLAM interface’s automatic updates of the displayed map, an

operator is able to control the robot remotely.

Implementing the human interface as a web service was regarded as a

success.

6.2 SLAM Performance, Reliability and Improve-

ments

Chapter 5 presents a number of experiments providing grounds for a dis-

cussion of the implemented SLAM process’ accuracy and reliability.

Many of the test cases show good results, and some results show failed

maps. Performance was particularly poor in areas where the LIDAR and

scan matching can’t be used to track position, as seen in Section 5.3. Sum-

ming up the SLAM performance experiments seem to result in a pattern,

where these areas are the main points of failure. The same suspicion was

made from initial testing during development.

For areas where LIDAR scans have enough landmarks for the scan

matching to be successful, results seem to be very good. Measurements

with tape measure show that the accuracy of the maps are highly satisfac-

tory, almost within the accuracy of the tape measure when considering the

long distances it was used for.

For the more accurate maps, the SLAM implementation’s nature means

that localization must be accurate to within centimeters when traversing

previously obtained maps. Otherwise, the SLAM process would write LI-

DAR measurements from erroneous pose estimates, causing map inconsis-

tencies. Although experiments were not done to explicitly assess localization

accuracy, the lack of map inconsistencies suggest the accuracy comparable

to the error of the LIDAR, which the maps also suffer from.

Loop closing experiments reveal that while maps of environments well

defined for the scan matching do contain errors, the errors are small even

when built up over a distance of up to 125 meters. However, they also show
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that the software-hardware combination in its current state cannot reliably

close such loops.

Problematic environments for the LIDAR-scan matching approach would

assumingly be fewer if the LIDAR had a longer range, although no such LI-

DAR was available for the work of this thesis, so no definitive conclusions

can be made. The discussion of Section 5.6 presents arguments for this case.

Using a multi-hypothesis SLAM algorithm could help close loops, but

would not in itself help for the poorly defined areas which were presented in

Section 5.3. None of the particles in Rao-Blackwellized particle filters would

move correctly further if the same underlying scan matching was done in

order to propagate them, as done in [27].

The computational requirements show that maps are already taking up

much of the memory which even modern computers can maintain effectively.

If no compromises should be made in terms of map quality, this suggests

multi-hypothesis mapping would have to be done with a map data structure

for example like DP-Mapping, presented in [17], complicating the software.

Note also the complications of multi-hypothesis tracking presented in Sec-

tion 4.5.

Some of the errors made in such poorly defined areas might be com-

pensated for through better use of the odometric data. The experiments

comparing maps generated with and without such data show only small dif-

ferences. An experiment with an alternative implementation showed better

results could be obtained in situations poorly defined for scan matching, at

the cost of overall accuracy and reliability.

However, as discussed in Chapter 4, other alternatives for Kalman filter

updates from scan matching exist. One of them is used in the article de-

scribing Hector SLAM, but was not successfully implemented for this thesis.

Another alternative for odometric integration could be to use particle

filters, for which a short introduction was given in Chapter 2. Particles of

robot pose could be propagated with a probabilistic model, as described

in [59], then weighted and resampled based on how well they fit with the

map as obtained so far. The error covariance presented by the already

implemented scan matching might be enough to weight the particles. The

distribution of particles could be used to give a good estimate of position
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before scan matching.

Note that this is very different from using Rao-Blackwellized particle

filters for SLAM. The author could not find any articles describing this use of

particle filters. The implementation of such a scheme was not done because

of time constraints. An implementation is assumed to be more reliant on

odometry, to a point where the algorithm might need to explicitly consider

the case where odometry is not available.

Global localization refers to the ability to start anywhere in a previously

obtained map, and derive the current location. Such a step could be used

when starting from a stored map, before the regular SLAM process takes

over in order to maintain the map. Global localization was not implemented

for this thesis, but could prove very useful for applications of the robot.

A common approach to global estimation is Monte Carlo localization,

already mentioned in Section 2.4 and with regards to the NTNU-Eurobot

robot in Chapter 4. Maps are assumed to be static, and a particle filter is

used to estimate a probability distribution over poses in the map, further

explained in [59] and [8].

Global localization would allow the robot to be started from any posi-

tion, not just the map’s point of origin, as with the current implementation.

6.3 Path Planning and Guidance

While SLAM is the most prominent field of study for this thesis, path plan-

ning and guidance is not to be forgotten. Two path planning algorithms

were implemented, before a combination of A* with path smoothing was

implemented and used for testing.

The path planning algorithm, with construction of binary maps, works

satisfactory in most cases. A contra-example is found in Section 5.8, where

a narrow passage proves a hindrance for path planning. If this proves to be

a problem for the robot’s functioning, the problem should be investigated

further. Apart from this case, the path planning algorithm gives satisfactory

results, both when planning in known and unknown areas of the map, shown

by experiments in sections 5.8 and 5.4.

Apart from the quality of the paths, speed is another measured quality
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of path planning. The current path planning algorithm spends a relatively

long time of up to over 20 seconds before returning a result. As discussed

in sections 5.8 and 5.9, shorter time spans could facilitate more efficient

automatic navigation.

Time posed a limit on the number of path planning algorithms which

could be implemented. A* and Hybrid A* was implemented, as explained

in Chapter 4, but A* was more versatile and honored the robot’s ability to

“turn on a dime”. However, Hybrid A* is cited to produce results after 100

milliseconds [42], suggesting that further investigation on optimization and

heuristics of the A* algorithm could lower the execution time.

No significant errors of the implemented guidance scheme were uncov-

ered by experiments and initial testing. Figure 5.17 shows examples where

the differences of the planned path and the robot position trace are hard

to see, suggesting the scheme was accurate. The implemented line of sight-

scheme is seen as both intuitive and successful.

6.4 Autonomous Abilities of the Robot

Experiments show the software-hardware combination is capable of gener-

ating maps both from manual control and by automatically planning paths

in unknown environments. The robot can accurately follow these paths

while simultaneously avoiding collisions. During testing and experiments,

no collisions occurred except for one occasion when the motor controller

card crashed. However, the motor card fault was not a concern for this

thesis.

The robot does posses flaws in terms of its ability to avoid certain obsta-

cles. These include downward stair cases and other “cliffs”, low obstacles

such as curbs or doorsteps, tables and other obstacles which the LIDAR

cannot sense. As long as the LIDAR is the robot’s only mean of detecting

obstacles, these limitations will remain. Note that dynamic environments,

such as when people are present during mapping, was not considered for

this thesis.

Experiments suggest that the robot can operate autonomously in envi-

ronments which do not contain such obstacles as described above, which has
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no long stretches of plain walls or open spaces (see experiment for “poorly

defined areas” in Section 5.3) and which does not contain larger loops, which

also can pose inconsistencies. The current hardware-software combination

poses limitations, but many environments free of such obstacles or under

supervision are still usable.

More reliable autonomous abilities can be achieved by manual control for

initial mapping. The operator can control that the robot does not fall down

stairs or crashes into unobserved obstacles. Maps can be inspected to make

sure obstacles are mapped and that they are consistent. Whenever such a

map is created, the robot has in experiments (“automatically traversing a

stored map”) shown abilities to reliably localize, plan paths, perform guid-

ance and update the map. For operation with the current implementation,

this would be the preferred strategy.

6.5 Fulfillment of Problem Description

6.5.1 Point 1

Point 1 of the problem description states that sensor decisions should be

suitable for generating maps and for autonomous operation. Experiments

with on-line mapping, maps versus physical measurement and closing of

loops show the sensors are successful in facilitating map generation. The

LIDAR and encoder wheels combination of sensors for SLAM is common in

literature [45, 17, 49] and should be usable with many SLAM approaches.

The combination has also proven successful in avoiding obstacles, as shown

with the experiment of automatic exploration.

Short-comings of the LIDAR, primarily in terms of range, is seen as an

issue of economy and the limitations economy represented when the unit

was bought.

The sensor combination facilitates autonomous operation to a large de-

gree, as shown in particular by the experiment of autonomous exploration.

The problem description is limited to not include avoidance of all kinds of

collisions or driving off edges. The LIDAR, which is used to avoid obsta-

cles, only measures in a horizontal plane, usable for detecting many kinds of
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obstacles, but not all. This was seen as sufficient for fulfilling the problem

description on this point.

6.5.2 Point 2

A literature study of SLAM algorithms is presented in Chapter 2, which re-

sulted in the implementation of two algorithms, of which one was supported

throughout the work of the thesis. The algorithm works both on-line and

off-line, as demonstrated by experiments, and handles maps of over 10 000

m2. The point is therefore regarded as fulfilled.

6.5.3 Point 3

Point 3a describes data collection, which is implemented by the sensor mod-

ule’s logging module. Many of the experiments were dependent on this

module functioning, for example the comparison of obtained logs with and

without odometry.

Point 3b describes manual control of the robot, which is implemented

via the web interface and the motor module.

Point 3c describes on-line SLAM with manual control, demonstrated in

the experiment of on-line mapping in Section 5.1.

Point 3 is therefore regarded as fulfilled.

6.5.4 Point 4

The on-line SLAM with automatic exploration of point 4a was demonstrated

in the experiment of automatic exploration in Section 5.9, while point 4b’s

abstracted navigation is demonstrated in the experiment of traversing a

stored map in Section 5.4.

6.5.5 Point 5

Point 5 describes the interface, which is shown in Section 4.11.
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Chapter 7

Future Work

This project can be developed further in a variety of different ways. The

project provides a large amount of flexibility and opportunities for future

project work and master theses. As a result, this chapter is relatively com-

prehensive.

This chapter is dedicated to presenting some of the ideas the author has

for possible future work.

7.1 A Note On Extensions

All software described in this thesis is maintained in a Git repository hosted

by the free service Bitbucket by Atlassian, Inc.. There are a number of

different ways to work with the code.

If the project goes on without central management of the code, work

can still continue because the repository is open.

For changes which do not break features, the preferred way to contribute

is to branch the repository. The contributor can work on her own branch

until she reaches some “stable” version, a version which has no or few known

bugs. This version is then merged into the master branch.

For contributors wanting to make breaking changes, i.e. changes that

in any significant way abandons features previously in the software, a more

appropriate way of contributing is by forking the repository. This creates

a new repository based on the same code, and the contributor is free to do
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as she pleases.

The repository can be found at bitbucket.org/mikaelbe/tigerslam .

7.2 SLAM and Navigation Related

7.2.1 Global Localization

Global localization is mentioned in Section 6.2. Given that the robot is

started in some previously mapped area, the appropriate map could be

selected by the operator, and a global localization scheme could try to lo-

cate the robot’s position in this map. The SLAM algorithm could then be

started, and achieve consistency.

The current implementation has no such feature, and always assumes

the robot is started in the map’s origin.

For simplification, it is also possible to give the operator the job of

declaring some small area in which the robot is known to be located. This

reduces the amount of computation needed to localize the robot.

The mentioned section outlines the possibility of using Monte Carlo

localization to achieve this feature.

7.2.2 More Advanced Observation Model

The current implementation draws LIDAR beams to a map using a simple

Bresenham line drawing algorithm. It is possible that a more advanced

observation model could yield more accurate results.

For example, [18] presents a model based on the distance the laser beam

has traveled through the space which each cell represents. One of the ar-

guments presented for this view is that a beam diagonal to the map grid is

potentially updating more cells than a beam in line with a row or column.

Considering that the internal model of the cells is not binary, but a floating

point number representing the cells’ log-odds of being occupied, it makes

sense to use a more consistent model.

The article does not present empirical results on how much of a differ-

ence the observation model yields over Bresenham line drawing, and also

uses a different scan matching algorithm. Such an observation model could

bitbucket.org/mikaelbe/tigerslam
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help in situations of obstacles with small footprints, because diagonal lines

intercepting cells of the border of the obstacle would be treated more con-

sistently.

7.2.3 Explicit Map Exploration Mode

The current implementation of automatic exploration requires the operator

to select a goal location. If this is a mode to be developed further, a scheme

could be developed to make exploration completely autonomous, with “the

click of a button”.

The scheme could strategically place a goal location. If after some time,

no path can be found to the location, or the robot reaches it, a new point

could be selected. The process would terminate if no goal location is both

unknown and has paths leading to it.

A way to find such strategic goal locations could be to look for neigh-

boring cells of unknown and free state. Observed walls would cause the

transition to be unknown-occupied-free.

7.2.4 Dealing With Non-Flat Surfaces

The software currently considers only planar environments, but many envi-

ronments have non-flat surfaces. Even the areas used for the experiments

presented in Chapter 5 were not completely planar, having small inclines

through door openings.

When the planar assumption breaks, errors in the SLAM process can

occur. With the LIDAR’s plane of measurement in a non-horizontal config-

uration, beams can hit the ground or exaggerate distances to walls ahead.

Note that errors due to these effects were not considered in this report, but

may have had a small impact.

The original Hector SLAM article [37] describes applications of the same

SLAM approach where no assumption is made that the LIDAR is held

completely horizontal. It uses an IMU to measure the angle at which the

LIDAR is.

LIDAR scans can be rejected if the angle from horizontal is too large,

or transformed into the horizontal projection.
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7.2.5 Controlled Backing As Collision Avoidance Maneuver

When the robot is in guidance mode and follows a precomputed path, it can

detect obstacles in its way and stop. The current implementation proceeds

to “blindly” drive about half a meter in reverse, without considering that

the backward direction can also be obstructed. This can be done more

controlled. For more information on the backing, see Chapter 4.

Solutions include considering what the robot already knows, in other

words, plan a escape path with regards to all data in the map. Another

solution is to include more sensors. An example would be backward facing

infrared or ultrasonic sensors, ensuring that the area is clear before backing.

If the backing procedure is planned as a regular path, this point requires

the ability to traverse paths in reverse.

7.3 Architecture and Code Related

7.3.1 Start Anywhere and Scalable Maps

The current implementation features maps of constant size. Start position

in the map has to be defined before starting the SLAM process.

A better way to do this would be to have maps scale when needed. Maps

could start off small, then expand when the robot reaches an edge. This

could relieve the on-board computer of having to maintain more memory

than necessary.

7.3.2 Re-planning while Navigating

As described in Chapter 4 and later discussed, the current implementa-

tion plans a path once, then navigates the robot along the path until an

obstruction is noticed very near the robot.

A better implementation would consider all the available information

at all times. When the SLAM process makes a discovery that the planned

path is obstructed, a new path can be planned right away – there’s no need

to wait until the robot has nearly crashed.

One of the reasons this functionality was not implemented during the
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development related to this thesis, is that the path planning algorithm is

slow. It can use several seconds to plan a new path, and at that point, the

map might have changed substantially.

A Hybrid A* algorithm such as described in Chapter 4 and in [42] is

an alternative which potentially could reduce planning times enough: the

latter cites planning times of under 100 milliseconds. Some of the speed

gain is achieved through the us of a precomputed heuristic.

7.3.3 Separation of GUI and API

The current implementation includes a web interface for controlling all of

the robot’s function, as described in Chapter 4. The web interface is a part

of the robot software, and includes both serving of HTML and static files,

and an application programming interface – an API. The API is used for

communication with the robot without reloading a page in the user’s web

browser.

A suggestion for a better solution is to re-think this strategy, and have

the software only offer an API.

Key to such an approach is that the API is exhaustive of the functions

which the software should offer. In other words, the API would have to be

sufficient in order to control every controllable aspect of the software.

The main advantage of this approach is the ease of which alternative

interfaces could be constructed. Interfaces for the robot could be specialized,

so that they only control some relevant aspect of the robot’s functions. An

example would be a separate application for the schedule system presented

in Subsection 7.5.1. Another would be separate applications for having

the robot navigating to locations decided by some unrelated process, for

example an alarm.

Notice that the real improvement is the separation of code for different

purposes. Having the robot react to an alarm in the facilities is not neces-

sarily a core functionality of the robot software. Instead, the robot could

facilitate such functions by allowing third party software to command the

robot to navigate to a specific location.

It would be beneficial if the development of such an API included work
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towards formalizing the API architecture to some standard.

7.3.4 For Other Robots

While efforts have been made to make modularized and reusable code, fur-

ther work could be done in order to make the software seamlessly work with

other robots.

This includes having a more intuitive way of switching between drivers

for different odometric and LIDAR sensors. Which driver to use could be

chosen automatically or as a configuration parameter.

Code regarding path planning and guidance might also have to be up-

dated if the software should be used with different drive schemes, such as

Ackermann steering.

7.4 Hardware Related

7.4.1 Better obstacle detection

As mentioned in Chapter 3, the current sensor combination and configura-

tion is unable to detect some crucial obstacles. If the robot should operate

completely autonomously, being able to safely navigate free of all obstacles

is paramount.

Obstacles which the robot could fail to detect with the current imple-

mentation includes the following:

� Downward going staircases and other “cliffs”, where the floor ends with-

out a rail or wall. The LIDAR is unable to register changes in the floor

itself, and could potentially fall down.

� Low walls, such as pavement edges and other low obstacles. If a wall

or obstacle is under the LIDAR’s plane of sight, it is not detected and

can potentially be crashed into.

� Tables, shelves and other objects with a footprint in the LIDAR’s plane

of view small enough for the path planning algorithm to think the area

is free to be traversed. Although the floor is free, the robot’s upper

parts could crash into such an obstacle.
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If the robot is to be made truly autonomous in environments not strictly

confirmed to be free of such obstacles, all this scenarios have to be addressed.

7.4.2 Reverse Faced Range Sensor

Just like a LIDAR with longer range would help making maps more accu-

rate, a rear facing LIDAR could also help.

To utilize more than one LIDAR unit at a time, some research and con-

siderations would have to be done. However, as long as the transformation

matrices relating each of the two LIDARs’ positions to the robot are known

to some precision, matching different LIDAR scans in different directions is

possible.

This provides an alternative use for the currently forward facing LIDAR

if a better main LIDAR is bought for the project in the future.

7.5 New Features

7.5.1 Schedule System

A “schedule” system was mentioned in Chapter 1. The proposed idea is to

improve the robot’s usability for remote operators by letting the operators

order the robot to report at a specific location at a specific point in time.

An operator wishing to perform some work at a specific location could

then use some interface to book the robot at that place, at a specific time.

Such a system would help different operators share the robot in an ef-

ficient manner. The operators would not need to worry about moving the

robot to the location they require, thus saving time.

7.5.2 Automatic Recharge

Having the robot support automatic recharging at a recharging station re-

quires work with both software and hardware. On the hardware side, the

robot would have to be prepared and a charging station would have to be

constructed.
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For the software side, some means of monitoring the batteries’ states are

needed. While one possibility is to monitor the computer and motor’s drive

time since last update, a presumably more reliable method is to measure

the batteries’ voltage.

Such a system has been implemented and described by [30]. Although

that article focuses on smaller robots, useful insights are provided.

7.5.3 Images and Object Recognition

The robot hardware is already equipped with cameras, which could be used

for many applications.

One of them would be to capture images of the environment and link

them to the position from which they were taken. The capturing could

be triggered by the operator, or at regular time or distance intervals. It

could be possible to implement a scheme resembling Google Street View,

where detailed photographs are linked together with location data. Several

images together with the SLAM maps and computer vision technology be

used to recreate approximate 3D visualizations of the environment.

The cameras could also be used to recognize points of interest, such as

doors or windows. These could be displayed in the web interface superim-

posed on the map, providing more details for the operator.
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Appendix A

Configuration

Configuration parameters for various modules of the software are presented

throughout the thesis. This appendix presents the most important configu-

ration parameters.

Web Interface

realm

Realm for authentication.

Example: TigerSLAM

username

Username for authentication.

Example: root

passphrase

Passphrase for authentication.

Example: $1$dlPL2MqE$oQmn16q49SqdmhenQuNgs1 (“hello”)

Sensors

lidar_num_distances

Number of distances to measure from the LIDAR.

Example: 681

lidar_radial_span

The angular span of the LIDAR measurements, in degrees.
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Example: 240

lidar_max_distance

Maximum distance the LIDAR can measure, in millimeters. SLAM

algorithms can use this information.

Example: 5600

lidar_position_y

Lateral displacement of the LIDAR to the robot body, in meters.

Example: 0.0

lidar_position_x

Distance from center of robot to the LIDAR, along the forward direc-

tion, in meters.

Example: 0.343

Robot Model

robot_base_width

Base width of the robot, from wheel to wheel. Based on models for

differential drive robots. Defined as base width between encoder wheels

for this thesis.

Example: 0.389

robot_wheel_radius

Radius of the encoder wheels, in meters.

Example: 0.0505

robot_odometry_ppr

Number of pulses per revolution of the odometric wheels.

Example: 800

TinySLAM Specific

tinyslam_sigma_xy

Variance in spatial dimensions for the TinySLAM Monte Carlo search.

Example: 0.30

tinyslam_sigma_theta

Variance in the angular dimension for the TinySLAM Monte Carlo
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search.

Example: 0.07

tinyslam_hole_width

Width of the holes which TinySLAM produces in maps and uses for the

Monte Carlo search.

Example: 350

tinyslam_montecarlo_iterations

Number of iterations which the TinySLAM search should perform.

Example: 1000

tinyslam_gridmap_size

Size of the TinySLAM grid map. Product of the length of the two sides,

in meters.

Example: 16384 (128× 128)

tinyslam_gridmap_resolution

Resolution in cells per meter for TinySLAM.

Example: 100

HectorSLAM Specific

hectorslam_gridmap_size_x

Grid maps’ sizes in x direction.

Example: 4096

hectorslam_gridmap_size_y

Grid maps’ sizes in y direction.

Example: 4096

hectorslam_gridmap_resolution

Resolution of maps in length of one cell in meters.

Example: 0.0125

hectorslam_gridmap_start_x

Origin of maps in x direction, in fraction of the map.

Example: 0.5

hectorslam_gridmap_start_y

Origin of HectorSLAM maps in y direction, in fraction of the map.

Example: 0.5
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hectorslam_levels

Number of levels (image pyramid like) maps should include.

Example: 4

hectorslam_update_factor_free

Update factor for a cell when it is observed to be free.

Example: 0.35

hectorslam_update_factor_occupied

Update factor for a cell when it is observed to be occupied.

Example: 0.9

hectorslam_map_update_min_angle_diff

Update the map if the robot has rotated so many radians.

Example: 0.20

hectorslam_map_update_min_dist_diff

Update the map if the robot has moved so far in meters.

Example: 0.40

hectorslam_use_odometry

Consider odometry while performing SLAM.

Example: on

Collision Avoidance System

collision_detection_radius Minimum distance from the LIDAR for

obstacles to be considered in the collision area.

Example: 0.4

collision_detection_angle Radius of the sector which is considered for

collision avoidance, in radians.

Example: 3.14

Lookahead Guidance System

lookahead_distance

Example:

lookahead_p

Example:
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lookahead_u

Example:

lookahead_tdelta

Example:

A* Path Planning

astar_max_iterations

Maximum number of iterations to perform when planning a path.

Example: 1000000

astar_unknown_punish

Punish factor for unknown areas.

Example: 100.0

astar_smoothing_data_weight

Weight given for retaining the original path.

Example: 0.5

astar_smoothing_smooth_weight

Weight given for smoothing the path.

Example: 0.4

astar_check_radius

Minimum distance to any obstacle for paths planned, in meters.

Example: 0.4

astar_shrink_factor

Enlarge cells by this (integer) factor when producing the binary maps

before planning paths. Reduces the number of cells accordingly.

Example: 4
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Appendix B

API Calls

This appendix lists the calls of the web API as currently implemented. The

API calls are used by the client side of the web interface, and can also be

used by other applications.

The API is separated into a streaming log API, get and set methods.

Get methods retrieve information, while set methods manipulate data or

state.

Note: The API is, like the rest of the web interface, password protected.

Authentication is done by basic access authentication, with username and

password configurable (see Appendix A).

Data Streaming API

A data streaming API provides log updates over a continuous websocket

connection. The API URL is /api/streaming/log/. Log messages are

separated by newline characters.

SLAM

Set Methods

initialize

Parameters: algorithm string
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Effects: Initializes the SLAM algorithm with the given algorithm. Fails

if SLAM is already initialized.

Return: OK on success, error on failure. URL:/api/set/slam/initialize

initialize-from-stored-map

Parameters: algorithm string, filename string

Effects: Initializes the SLAM algorithm with the given algorithm and

the given stored map, identified by file name. Fails if SLAM is already

initialized.

Return: OK on success, error on failure. URL:/api/set/slam/initialize-

from-stored-map

start

Parameters: –

Effects: Starts the initialized SLAM algorithm, fails if already started.

Return: OK on success, error on failure. URL:/api/set/slam/start

stop

Parameters: –

Effects: Stops the started SLAM algorithm, fails if already stopped.

Return: OK on success, error on failure. URL:/api/set/slam/stop

terminate

Parameters: –

Effects: Terminates (un-initializes) the initialized SLAM algorithm.

Fails if no SLAM algorithm is initialized.

Return: OK on success, error on failure. URL:/api/set/slam/terminate

save

Parameters: name string, description string

Effects: Saves the initialized SLAM algorithm’s map with the specified

name and description (not required).

Return: OK on success, error on failure. URL:/api/set/slam/save

Get Methods

stats

Parameters: –

Return: JSON object with SLAM state and estimated position, fails if
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SLAM is not initalized.

URL: /api/get/slam/stats

image/full

Parameters: –

Return: PNG encoded image of the full map, fails if SLAM is not

initialized.

URL: /api/get/slam/image/full

image/tile

Parameters: zoomLevel int, tileX int, tileY int

Return: PNG encoded 256× 256 pixels image of tile at tile coordinate

(tileX, tileY), with zoom level zoomLevel. The number of tiles in

each direction for any map is decided by n = 2zoomLevel. For more

information, see Google Maps JavaScript API Documentation1. Fails

if SLAM is not initialized.

URL: /api/get/slam/image/tile

Map Storage

Set Methods

mapname

Parameters: filename string, newname string

Effects: Renames map with filename filename to newname.

Return: OK on success, error on failure.

URL: /api/set/mapstorage/mapname

Get Methods

package

Parameters: filename string

Return: Entire map with meta data and thumbnail. Error if no such

filename exists.

URL: /api/get/mapstorage/package

1https://developers.google.com/maps/documentation/javascript/

https://developers.google.com/maps/documentation/javascript/
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metadata

Parameters: filename string

Return: JSON object containing map meta data. Error if no such

filename exists.

URL: /api/get/mapstorage/metadata

thumbnail

Parameters: filename string

Return: PNG encoded thumbnail image of map. Error if no such file-

name exists.

URL: /api/get/mapstorage/thumbnail

Sensors

Set Methods

mapname

Parameters: filename string, newname string

Effects: Renames map with filename filename to newname.

Return: OK on success, error on failure.

URL: /api/set/mapstorage/mapname

Sensors

Set Methods

connect

Parameters: sensor string

Effects: Connects to the sensor.

Return: OK on success, error on failure.

URL: /api/set/sensors/connect

disconnect

Parameters: sensor string

Effects: Disconnects the sensor.

Return: OK on success, error on failure.

URL: /api/set/sensors/disconnect



139

start

Parameters: sensor string

Effects: Commands the sensor to start producing and distributing mea-

surements.

Return: OK on success, error on failure.

URL: /api/set/sensors/start

stop

Parameters: sensor string

Effects: Stops the taking and distributing measurements.

Return: OK on success, error on failure.

URL: /api/set/sensors/stop

Sensor Logs

Set Methods

delete

Parameters: logname string

Effects: Deletes the log with filename logname. Fails if no such log is

found.

Return: OK on success, error on failure.

URL: /api/set/sensorlogs/delete

rename

Parameters: logname string, newname string

Effects: Renames the log with filename logname to newname. Fails if

file is not found.

Return: OK on success, error on failure.

URL: /api/set/sensorlogs/rename

start-logread-realtime

Parameters: logname string

Effects: Starts distributing data from the log at the same speed at

which it was acquired. Fails if the log is not found.

Return: OK on success, error on failure.

URL: /api/set/sensorlogs/start-logread-realtime
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stop-logread-realtime

Parameters: –

Effects: Stops the distribution of data from log.

Return: OK on success, error on failure.

URL: /api/set/sensorlogs/stop-logread-realtime

Motor

Set Methods

speeds

Parameters: left number, right number

Effects: Sets the relative speeds [−1, 1] of both motors.

Return: OK on success, error on failure.

URL: /api/set/motor/speeds

planpath

Parameters: x number, y number

Effects: Plans path from robot’s current position to world coordinate

(x, y). May take time.

Return: OK on success, error on failure.

URL: /api/set/motor/planpath

followpath

Parameters: –

Effects: Triggers guidance on current planned path. Fails if no path is

planned.

Return: OK on success, error on failure.

URL: /api/set/motor/followpath

stoppathfollowing

Parameters: –

Effects: Stops guidance.

Return: OK on success, error on failure.

URL: /api/set/motor/stoppathfollowing

deletepath

Parameters: –
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Effects: Deletes the current planned path.

Return: OK on success, error on failure.

URL: /api/set/motor/deletepath

Get Methods

path

Parameters: –

Return: JSON path object. Fails if no path is planned.

URL: /api/get/motor/path
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Appendix C

Disc Contents

This thesis comes with a DVD disc. The contents are described below.

TigerSLAM

Folder containing a compiled version of the program. The program is

compiled for 64 bit Windows platforms. The assets folder bundled with

the program contains illustrative sensor logs and ready-made maps. The

sensor logs can be used for testing and further development. Important

note: In order to use the program, the “assets root” parameter of the

configuration file must be set.

Videos

This folder contains a video produced to highlight some of the features

of the system, as an introduction or short summary of the project. The

video shows how maps are built and demonstrates guidance abilities.

The video is also available at YouTube1. Additionally, this folder con-

tains some of the raw material for this video: videos of the mapping

process in real-time.

Source

The source code of the system. Note that this source code is also avail-

able at Bitbucket : bitbucket.org/mikaelbe/tigerslam. The Bit-

Bucket repository should be the preferred source of the code. The

code is provided on disc for documentation.

1http://youtu.be/66rKR5-uYZ4
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Map Images

This folder contains full-resolution images of some of the maps presented

in Chapter 5.
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